Supporting information

Three-dimensional Carbon Foam-Metal Oxides based Asymmetric Electrodes for

High-performance Solid-state Micro-Supercapacitor

Sumana Kumar¹ and Abha Misra^{1*}

¹Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore,

Karnataka 560012

Figure S1: (a) Nitrogen adsorption-desorption isotherms for CF-MnO composite. (b) pore size distribution of CF-MnO composite.

Table S1: Calculated total specific surface area S_{BET} , total pore volume V_T , total micropore volume V_M , micropore surface area S_M , external surface area S_E , average pore diameter d_M for CF, and CF-MnO listed below.

	S _{BET}	VT	V _M	S _M	S _E	d _M
	m ² g ⁻¹	cm ³ g ⁻¹	cm ³ g ⁻¹	m ² g ⁻¹	m ² g ⁻¹	nm
CF	209.3	0.2916	0.03	63.39	145.91	5.574
CF-MnO	98.22	0.1781	0.0172	35.9	62.32	9.224

Figure S2: Electrochemical performance of positive electrode material in 6M KOH electrolyte. (a) *CV* curves of CF-MnO (3:1) electrode measured at different scan rates. (b) Galvanostatic charge-discharge curve of CF-MnO (3:1) electrode at various current densities. (c) Nyquist plot of CF-MnO (3:1) electrode. (d) The specific capacitance of CF-MnO (3:1) calculated from *CV* curves as a function of scan rates. (e) The specific charge and capacity of CF-MnO (3:1)

calculated from *CV* curves as a function of scan rates. (f) The specific charge and capacity of CF-MnO (3:1) calculated from *CD* curves as a function of current densities.

Figure S3: Nyquist plot of pristine CF electrode. Inset shows a magnified view in the high-frequency region.

•

Figure S4: The electrochemical performance of negative electrode material in 6 M KOH electrolyte. a) CV curves of CF-Fe₂O₃ (9:1) at various scan rates ranging from 5 to 50 mV/s. b) Galvanostatic charge-discharge curves of CF-Fe₂O₃ (9:1) at different current densities. c) Nyquist plot of CF-Fe₂O₃ (9:1) in the frequency ranging from 0.01 Hz to 1k Hz. d) Specific capacitance of CF-Fe₂O₃ (9:1) calculated from *CV* curves as a function of scan rates. e) The specific charge and capacity of CF-Fe₂O₃ (9:1) calculated from *CV* curves as a function of scan

rates. (f) The specific charge and capacity of CF-Fe₂O₃ (9:1) calculated from *CD* curves as a function of current densities.

Figure S5: Morphological and structural characterization of spray printed asymmetric microsupercapacitor. Top-view SEM image of (a) CF-Fe₂O₃ coated negative microelectrodes, (b) CF-MnO coated positive microelectrodes. Cross-sectional SEM image of (c) CF-Fe₂O₃ composite coated negative electrode, (d) CF-MnO composite coated positive electrode.

Figure S6: Areal capacitance of CF-MnO//CF-Fe₂O₃ device calculated from the CV curves with varying voltage window from 0.8 to 1.4 V.

Figure S7: CV curves of asymmetric CF-MnO//CF-Fe₂O₃ micro-supercapacitor at scan rates ranging from 5 to 50 mV/s.

Figure S8: The discharge current density plotted with each corresponding scan rate of the CF- $MnO//CF-Fe_2O_3$ device.

Figure S9: (a) Galvanometric charge-discharge curve for asymmetric micro-supercapacitor with various current densities. (b) Coulombic efficiency plotted against applied current densities.

Figure S10: The voltage drop or IR drop plotted with each corresponding applied current density of the CF-MnO//CF-Fe₂O₃ device.

Figure S11: Volumetric capacitance of CF-MnO//CF-Fe₂O₃ asymmetric micro-supercapacitor versus scan rate.

Figure S12: Areal specific charge and areal specific capacity versus scan rate of the asymmetric micro-supercapacitor.

Table S2: The areal specific capacitance versus applied current density of the asymmetric micro-supercapacitor.

Current density (mA/cm ²)	Areal specific capacitance (mF/cm ²)	
	$C_A = \frac{2I\int Vdt}{A \times V^2 \big _{V_i}^{V_f}}$	
0.12	2.24	
0.24	1.86	
0.36	1.62	
0.48	1.51	
0.60	1.43	
0.72	1.41	
0.96	1.34	
1.2	1.35	

Asymmetric micro-supercapacitor	Equivalent series	Ref
structure	resistance (R_s)	
VN//MnO ₂	70 Ω	1
MnO ₂ /MWNT//VWMWNT	42 Ω	2
NiCoP@NiOOH//ZIF-C	21.3 Ω	3
PNG//PNG-MoO ₂	55 Ω	4
MXene//AC	15 Ω	5
CF-MnO//CF-Fe ₂ O ₃	13.5 Ω	This work

Table S3: Comparison of equivalent series resistance (R_s) with reported interdigitated asymmetric micro-supercapacitor.

Figure S13: Ragone plot of the asymmetric micro-supercapacitor calculated from CV curves.

Table S4: The voltage excluding IR drop (V-IR) with each corresponding current density of the asymmetric micro-supercapacitor.

Current density	V-IR
mA/cm ²	V
0.12	1.382
0.24	1.367
0.36	1.351
0.48	1.342
0.60	1.326
0.72	1.325
0.96	1.333
1.2	1.314
2.4	1.269
3.6	1.273

Figure S14: Ragone plot of the asymmetric micro-supercapacitor calculated from CD curves.

Figure S15: Ragone plot of the asymmetric micro-supercapacitor calculated from *CD* curves using integral formula.

 Table S5: Comparison of capacitance retention with reported interdigitated asymmetric microsupercapacitor.

Asymmetric micro-	Electrolyte	Retention (cycles)	Ref
supercapacitor structure			
Ti ₃ C ₂ T _x //MnO ₂ /PPy	PVA/H ₂ SO ₄	80.7% (5000)	6
$MnO_2//Fe_2O_3$	1 M KOH	80% (2,500)	7
Ti ₃ C ₂ //MnO ₂	PVA/LiCl	87% (10000)	8
MXene//AC	PVA/Na ₂ SO ₄	91.4% (10000)	5
PNG//PNG-MoO ₂	PVA/LiCl	88% (10000)	4
rGO//rGO/Mn ₃ O ₄	PVA/LiCl	94% (3000)	9
VO _x /rGO//G-VNQDs/rGO	PVA/LiCl	65% (8000)	10
MnO ₂ /MWNT//VWMWNT	PMMA-PC-LiClO ₄	86% (10000)	2
NiCoP@NiOOH//ZIF-C	PVA/KOH	86% (8000)	3
VN//MnO ₂	"Water-in-salt" gel SiO ₂ -LiTFSI	90% (5000)	1
CF-MnO//CF-Fe ₂ O ₃	РVА-КОН	86% (10000)	This

	work

References:

- J. Qin, S. Wang, F. Zhou, P. Das, S. Zheng, C. Sun, X. Bao and Z. S. Wu, *Energy Storage Mater.*, 2019, 18, 397–404.
- J. Yun, Y. Lim, H. Lee, G. Lee, H. Park, S. Y. Hong, S. W. Jin, Y. H. Lee, S. S. Lee and
 J. S. Ha, *Adv. Funct. Mater.*, 2017, 27, 1–13.
- 3 M. Qiu, P. Sun, G. Cui, Y. Tong and W. Mai, ACS Nano, 2019, 13, 8246–8255.
- L. Zhang, Z. Chen, S. Zheng, S. Qin, J. Wang, C. Chen, D. Liu, L. Wang, G. Yang, Y.
 Su, Z. S. Wu, X. Bao, J. Razal and W. Lei, *J. Mater. Chem. A*, 2019, 7, 14328–14336.
- 5 Y. Xie, H. Zhang, H. Huang, Z. Wang, Z. Xu, H. Zhao, Y. Wang, N. Chen and W. Yang, *Nano Energy*, 2020, **74**, 104928.
- K. Li, Y. Ma, P. Shen, C. Zhang, M. Cao, S. Xiao, J. Yan, S. Luo and Y. Gao, *Adv. Mater. Technol.*, 2020, 5, 1–8.
- Z. Liu, X. Tian, X. Xu, L. He, M. Yan, C. Han, Y. Li, W. Yang and L. Mai, *Nano Res.*, 2017, 10, 2471–2481.
- F. Zhao, W. Liu, T. Qiu, W. Bin Gong, W. Ma, Q. Li, F. Li and F. Geng, ACS Nano, 2020, 14, 603–610.
- X. Wang, F. Wan, L. Zhang, Z. Zhao, Z. Niu and J. Chen, *Adv. Funct. Mater.*, 2018, 28, 1–9.
- 10 K. Shen, J. Ding and S. Yang, Adv. Energy Mater., 2018, 8, 1–7.