Electronic Supplementary Information

Antimicrobial properties of nanostructured surfaces – demonstrating the need for a standard testing methodology

Martyna Michalska, *a Ralu Divan,^b Philippe Noirot^a and Philip D. Laible^a

^aBiosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA E-mail: m.michalska@ucl.ac.uk ^bCenter for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA

Table of content:

Table S1 Comparison of assays commonly used to determine bacterial viability after exposure to antimicrobial designs

Supplementary Text 1 Media preparation

Table S2 A list of compounds used in preparation of Regent C

Table S3 A list of compounds used in preparation of "Metals 44"

Table S4 Total number of cells suspended in various media and buffers

Supplementary Text 2 Statistical analysis

Fig. S1 Live/Dead assay optimization for (a) E. coli and (b) R. capsulatus

Fig. S2 Representative cytograms for E. coli (20:80 live:dead cells)

Fig. S3 Representative cytograms for *R. capsulatus* (20:80 live:dead cells)

Fig. S4 Bactericidal efficiencies of nanostructured silicon (L=390 nm, blunt tips) against *E. coli* in three environments

Fig. S5 Representative cytograms of *E. coli* and *R. capsulatus* after 2 h of interaction with the controls and sharp pillars

Fig. S6 Bactericidal efficiencies of nanostructured silicon (L=3.6 μ m, sharp tips) against *E. coli* and *R. capsulatus* after 4 h

Table 1 Comparison of assays commonly used to determine bacterial viability after exposure to antimicrobial designs. Assays 1 to 3 evaluate viability of the non-attached cells whereas assays 4 and 5 characterize viability of the cells attached to the surface. Criteria of the comparison include: accuracy with sources of false positive (FP, surface is or is more antimicrobial when it is not in reality) and false negative (FN, surface is not or is less antimicrobial than it is in reality) results; advantages and disadvantages of the assays.

	Assay	Description	Accuracy	Advantages	Disadvantages
1	Colony	Bacteria are spread on	High	- Inexpensive	- Time consuming
	counting	an agar plate and Colony	FP cluster of many	- Simple	- Big amount of disposable
	method	Forming Units (CFU)	cells forms CFU (when	- Standard method	material
	(spread	are counted as an	on tested samples)		- Determines only viable cells
	plate)	equivalent of viable	FN cluster of many		that able to grow
		cells in original	cells forms CFU (when		
		suspension	on control samples)		
2	Optical	Turbidity of cell	Low	- Inexpensive	- Spectrophotometer is needed
	Density	suspension is measured	FP n/a	- Simple	- Unable to distinguish live from
	(OD)	by spectrophotometer	FN (i) Unable to	- Fast	dead cells (unless they are
		and correlated with cell	distinguish live from	- Rate of proliferation can be	lysed)
		concentration	dead cells (ii) Cell	determined	
			clusters block light		
			more efficiently		
3	Flow	Cell suspensions are	High	- Fast	- Costly instrument
	Cytometry	stained with fluorescent	FP n/a	- High-throughput when plate	- Limitations of fluorescent
	live/dead	dyes that allow	FN injured cells scored	loader available	staining applies
	staining	discriminating live from	as viable but not able to	- Quantifies total, viable and	
		dead cells based on	proliferate	non-viable number of cells	
		various viability criteria.		- Provides data regarding cell	
		The samples are		morphology	
		analyzed by cytometry,		- Various fluorescent stains	
		providing cell counts for		available to assess viability	
		each subgroup		(membrane integrity, metabolic	
				activity, membrane polarization	
				etc.)	

4	Fluorescenc	Cells attached to the	High	- Data about cell adhesion	- Costly instrument
	e	surface or in solution are	FP sample preparation	- Determines viable and non-	- Time consuming
	Microscope	stained with fluorescent	FN (i) attached cells	viable cells	- Low-throughput
	live/dead	kit (see above), and	lost during surface	- Surface analysis possible	- Limitations of fluorescent
	staining	imaged by florescence	washing from non-	- Various fluorescent stains	staining applies
		microscope	attached cells (ii)	available to assess viability	
		-	already lysed cells are	(membrane integrity, metabolic	
			not visible	activity, membrane polarization	
				etc.)	
5	Scanning	Cells attached to the	High or moderate	- Great resolution	- Costly instrumentation is
	Electron	surface (or in solution	FP incorrect sample	- Provides in-depth analysis that	needed (SEM, critical-point
	Microscope	and transferred onto the	preparation	can speak to antimicrobial	dryer, sputtering system)
	(SEM)	supporting material) are	FN (i) lack of	mechanisms	- Complex sample preparation,
		fixed, dehydrated, dried,	resolution when too	- Ability to evaluate both non-	prone to artifacts
		covered with thin	low voltage applied or	attached and attached cells onto	- Contrasting requires toxic
		conductive film, and	due to the charging	the surface	staining reagents
		imaged using electron	effects, (ii) incorrect		- Time consuming
		microscope	sample preparation		- Difficult to analyze, resulting
					in high or moderate accuracy
					- Experience required
					- Rather not quantitative

Supplementary Text 1 Media preparation.

Media and buffers were prepared using deionized water according to the following recipes:

(a) Phosphate-buffered saline (PBS) – 1 x PBS contains: 0.001 M KH₂PO₄, 0.01 M Na₂HPO₄,
0.137 M NaCl, 0.0027 M KCl; pH was adjusted to 7.4.

(b) **Tris-buffered saline (TBS)** – 1 x TBS contains: 50 mM Tris-Cl buffer (pH 7.5), 150 mM NaCl.

(c) **M9 medium** – 1 x M9 contains: 15 g/l KH₂PO₄, 33.9 g/l Na₂HPO₄, 2.5 g/l NaCl, 5 g/l NH₄Cl; pH adjusted to 6.8. M9 medium with glucose contains 20 ml of 20% glucose solution.

(d) **MR 26 medium** – First, prepare reagents A, B, C. Reagent A is 1 M potassium phosphate buffer (K_2HPO_4 115g/l, KH_2PO_4 44.9 g/l; pH adjusted to 6.8). Reagent B is 1 M ammonium succinate (succinic acid 115g/l, pH adjusted to 6.8 with NH₄OH). Regent C is a concentrated base that consists of compounds dissolved in H₂O in order as listed in Table S2 below, followed by pH adjustment to 6.8 with NH₄OH.

Compound	Concentration (g/l)
Na ₂ -EDTA x 2 H ₂ O	11.16
(NH ₄) ₆ Mo ₇ O ₂₄ x 4 H ₂ O	0.0093
FeSO ₄ x 7 H ₂ O	0.099
"Metals 44"	50 ml
MgSO ₄	14.5
CaCl ₂	2.5

Table S2 A list of compounds used in preparation of Regent C.

"Metals 44" contains the following list of compounds (Table S3) dissolved in 1 l of H₂O:

Table S3 A list of compounds used in preparation of "Metals 44".

Compound	Concentration (g/l)
Na ₂ -EDTA x 2 H ₂ O	6.5
FeSO ₄ x 7 H ₂ O	5.0

ZnSO ₄ x 7 H ₂ O	10.9
$MnCl_2 x 4 H_2O$	1.3
CuSO ₄ x 5 H ₂ O	0.392
CoCl ₂ x 6 H ₂ 0	0.200
H ₃ BO ₃	0.113

Use 20 ml of A. B and C per 1 l of MR26 medium.

(e) **Super Optimal broth with Catabolite repression (SOC)** contains 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, and 20 mM glucose.

Table S4 Total number of cells suspended in various media and buffers, at initial time (0 h) and after 3 h. The cells were counted by flow cytometry and the values are expressed as cells/ μ l.

Cell type	Time	Media and Buffers					
een type	(h)	PBS	TBS	MR26	M9 salts	M9+glucose	
E coli	0	1050	991	1162	598	680	
L. cou	3	1031	921	1152	620	677	
R cansulatus	0	890	748	700	1000	504	
1. сирониниз	3	340	607	646	567	645	

Supplementary text 2 Statistical analysis

Each experiment was conducted with three technical replicates and minimum of three biological replicates. The data were assumed to have a normal distribution and thus an independent t-test, two-tails was performed in order to compare whether the differences between two means were significant at the significance level of 0.05. A statistically significant t-test result is one in which a difference between two groups is unlikely to have occurred because the sample happened to be atypical. Two hypotheses were tested:

- 1. Is there a significant difference between the antibacterial efficiencies derived from testing in rich medium or nutrient-free buffer?
- 2. Is there a significant difference between the antibacterial efficiencies assessed by cytometry or colony counting method (plates)? (to validate cytometry suitability to replace plating)

The data are listed below and organized by:

- Material type long (sharp) or short (blunt) pillars which, broadly, correspond to two killing mechanisms that occur on these structures, direct piercing and stretch-and-tear, respectively.
- 2. Organism type two Gram-negative species tested, E. coli and R. capsulatus.

Organism	Method	Rich vs Buffer; t-test results	Significant result
E. coli	Cytometry	t(7)=3.040, p=0.019	yes
	Plates	t(4)=2.827, p=0.047	yes
	Microscopy	t(2)=2.279, p=0.150	no
R. capsulatus	Cytometry	t(2)=1.000, p=0.423	no
	Plates	t(2)=0.526, p=0.651	no
	Microscopy	t(2)=22.000, p=0.00206	yes

Long pillars

Organism	Method	Cytometry vs Plates; t-test results	Significant result
E. coli	Rich	t(3)=2.031, p=0.135	no

	Buffer	t(4)=7.466, p=0.000072	yes
R. capsulatus	Rich	t(6)=0.331, p=0.752	no
	Buffer	t(6)=0.467, p=0.657	no

Short pillars:

Organism	Method	Rich vs Buffer; t-test results	Significant result
E. coli	Cytometry	t(6)=2.574, p=0.042	yes
	Plates	t(6)=5.597, p=0.00139	yes
	Microscopy	t(3)=7.606, p=0.00472	yes
R. capsulatus	Cytometry	t(4)=1.610, p=0.183	no
	Plates	t(4)=2.216, p=0.078	no
	Microscopy	t(2)=1.080, p=0.393	no

Organism	Method	Cytometry vs Plates; t-test results	Significant result
E. coli	Rich	t(5)=1.275, p=0.258	no
	Buffer	t(7)=2.722, p=0.030	yes
R. capsulatus	Rich	t(6)=1.270, p=0.251	no
	Buffer	t(3)=2.468, p=0.090	no

Figure S1. Live/dead assay optimization for (a) *E. coli* and (b) *R. capsulatus.* Two cell controls were prepared: (i) live cells, and (ii) dead cells, by subjecting them to heat-inactivation for 30 min at 60 °C. Two controls were mixed at known ratio, stained with SYTO9 and PI fluorescent dyes, and the number of live and dead cells was measured by flow cytometry. The dyes were mixed in the range of 0.8-1.2 of SYTO9:PI ratio. The graphs present data for ratio of 1 which was found as optimal.

Figure S2. Representative cytograms for *E. coli* (cells suspended in TBS). Live and dead cells were mixed at 20:80 ratio, stained with SYTO 9 and PI dyes, and assayed by flow cytometer. (a) SSC (side scattering) versus FSC (forward scattering) cytogram characterizes cells based on their morphology and serves to indicate a population of interest (total population of cells is gated out; *Total*). (b) PI versus SYTO 9 cytogram shows population of live and dead cells (green and red, respectively). The percentage of cells in each population is quantified and listed in a table below the cytogram. (c, d) The number of cells stained by SYTO 9 and PI dyes, respectively. The histogram is just a different graphical representation of the Graph (b).

Figure S3. Representative cytograms for *R. capsulatus* (cells suspended in TBS). Live and dead cells were mixed at 20:80 ratio, stained with SYTO 9 and PI dyes, and assayed by flow cytometer. (a) SSC versus FSC cytogram shows a population of interest (total population of cells is gated out; *Total*). (b) PI versus SYTO 9 cytogram shows population of live and dead cells (green and red, respectively). (c, d) The number of cells stained by SYTO 9 and PI dyes, respectively. The histogram is just a different graphical representation of the Graph (b).

Figure S4. Bactericidal efficiencies of nanostructured silicon (L=390 nm, blunt tips) against *E. coli*. Bacteria were interacting with the surfaces for 2 h in rich and minimal media, and nutrient-free buffer. The results show similar results obtained in rich and minimal media with the augmented values determined in PBS buffer. The values are expressed as a mean \pm SEM (n \ge 3 independent experiments).

Figure S5. Representative cytograms of *E. coli* (a-b) and *R. capsulatus* (c-d) after 2 h of interaction with the controls (a, c) and sharp pillars (b, d). Cells were suspended in nutrient-rich media. The percentage of live and dead cell populations was determined as well as cell concentrations.

(a)				(b)			
S 100 Long pillars	rich	buffer E. col	i i	S 100 Long pilla 86 86	rich 93 94 93	buffer R. cap:	sulatus
Bactericidal efficiency Bactericidal efficiency Bacter		5	71	Bactericidal efficiency 0 Bactericidal efficiency 0 Bactericidal efficiency		85	
Cytometry	Plates	Micro	oscopy	Cytome	try Plates	Micros	всору
E. coli		2 h	4 h	R. capsula	itus	2 h	4 h
C-A-	Rich	38%	33%	Cytomot	Rich	87%	86%
Cytometry	Buffer	51%	53%	Cytomet	Buffer	86%	94%
Distan	Rich	57%	77%	Diatos	Rich	85%	87%
Plates	Buffer	79%	75%	Flates	Buffer	82%	93%
	Rich	29%	61%	Mienesco	Rich	69%	85%
Microscopy	Buffer	55%	71%	[WIICTOSCO]	Buffer	25%	70%

Figure S6. Bactericidal efficiencies of etched silicon (L=3.6 μ m, sharp tips) against (a) *E. coli* and (b) *R. capsulatus* with corresponding tables below the graphs summarizing the data obtained after 2 and 4 h. On the graphs, bacteria were interacting with the surface for 4 h in rich medium and nutrient-free buffers. Bactericidal efficiencies were determined based on plating method, flow cytometry, and microscopy. The values are expressed as a mean \pm SEM (n \geq 3 independent experiments).