Partial sulfur vacancy created by carbon-nitrogen deposition of MoS₂ for high-performance overall electrocatalytic water splitting

Wenxia Chen^{a*}, Wei Wei^a, Kefeng Wang^a, Jinhai Cui^a, Xingwang Zhu^{b*}and Kostya (Ken) Ostrikov^c

^aSchool of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.

^bSchool of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.

^cSchool of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia.

*Corresponding authors E-mail: <u>wxchenedu@163.com</u>, <u>zxwiii@sina.com</u>

Fig. S1. The EDX spectral analysis of the C-N-MoS₂/CC-700 material.

Fig. S2. The SEM image of the pure MoS_2/CC .

Fig. S3. (a) and (b) TEM image, (c) HRTEM image and (d) electron diffraction of the pure MoS_2/CC .

Fig. S4. The SEM image of the C-N-MoS₂/CC-550.

Fig. S5. The SEM image of the C-N-MoS₂/CC-600.

Fig. S6. The XRD patterns of the as-prepared catalyst: (a) C_3N_4 , (b) C-N-MoS₂/CC-550, C-N-MoS₂/CC-600, C-N-MoS₂/CC-650 and C-N-MoS₂/CC-800.

Fig. S7. (a), (b) and (c) The SEM image of the C-N-MoS $_2$ /CC-650, (d) The TEM image of the C-N-MoS $_2$ /CC-650.

Fig. S8. (a), (b) and (c) The SEM image of the C-N-MoS₂/CC-800, (d) The TEM image of the C-N-MoS₂/CC-800.

Fig. S9. (a) The O_2 amount of C-N-MoS₂/CC-700 generated at a current density of 10 mA cm⁻² and

(b) corresponding Faraday efficiency.

Fig. S10. CV curves at various scan rates in the potential range $-0.01 \sim 0.01$ V vs. RHE for (a) MoS_2/CC , (b) C-N-MoS₂/CC-700, respectively.

Fig. S11. The TEM image of the C-N-MoS $_2$ /CC-700 after OER.

Fig. S12. The XPS spectra of the C-N-MoS₂/CC-700 after OER.

Fig. S13. (a) The H_2 amount of C-N-MoS₂/CC-700 generated at a current density of 10 mA cm⁻²

and (b) corresponding Faraday efficiency.

Fig. S14. The TEM image of the C-N-MoS $_2$ /CC-700 after HER.

Fig. S15. The XPS spectra of the C-N-MoS₂/CC-700 after HER.

Fig. S16. The optimized atomic structure model for (a) MoS_2 and (b) C-N-MoS₂-700.

Fig. S17. The influence of different adsorption active sites.

Fig. S18. The intermediates configuration of OER for (a) pure MoS_2 and (b) C-N-MoS₂-700.

Sample	Atomic concentration (%)				Atomic ratio
	С	Ν	Mo	S	C/N
C-N-MoS ₂ /CC-550	53.77	38.67	3.14	4.42	1.4
C-N-MoS ₂ /CC-600	62.71	30.29	3.02	3.98	2.1
C-N-MoS ₂ /CC-650	67.32	25.80	2.99	3.89	2.6
C-N-MoS ₂ /CC-700	74.39	18.98	2.87	3.76	3.9
C-N-MoS ₂ /CC-800	77.14	16.17	2.90	3.79	4.8

Table S1 The atomic ratio of the prepared catalyst analyzed by XPS.

Materials	Supports	Electrolytes	$\eta_{J=10 \text{ mA cm}}^{-2}$ (mV)	References
CN-MoS ₂ /CC-700	CC	1 M KOH	230	This work
MoS ₂ /NiS	GC	1 M KOH	350	1
CoNC@MoS ₂ /CNF	GC	1 M KOH	325	2
$Co(OH)_2@aMoS_{2+x}$	-	1 M KOH	380	3
Co ₉ S ₈ @MoS ₂ /CNFs	-	1 M KOH	430	4
MoS ₂ -Ni ₃ S ₂ HNRs	NF	1 M KOH	249	5

 Table S2 The comparison of OER performance with state-of-the-art electrocatalysts.

Table S3 TOF of the as-prepared catalysts at overpotential of 200, 250 and 300 mV corresponding

to OER.

TOF s ⁻¹ (mV) Samples	ղ=200	250	300
MoS ₂ /CC	0.00843	0.0120	0.0150
C-N-MoS ₂ /CC-550	0.0201	0.0294	0.0375
C-N-MoS ₂ /CC-600	0.0326	0.0494	0.0821
C-N-MoS ₂ /CC-650	0.0471	0.0657	0.1050
C-N-MoS ₂ /CC-700	0.0827	0.1260	0.1530
C-N-MoS ₂ /CC-800	0.0122	0.0150	0.0179

Materials	Supports	Electrolytes	$\eta_{J=10 \text{ mA cm}}^{-2} (mV)$	References
C-N-MoS ₂ /CC-700	CC	1 M KOH	90	This work
MoS_{2^+x} nanoparticles	-	1M KOH	310	1
CoNC@MoS2/CNF	CC	1M KOH	143	2
MoS ₂ /NiCoS	GC	1 M KOH	189	6
MoS ₂ /NiS	GC	1 M KOH	244	7
$CoS_x@MoS_2$	Ni foil	1 M KOH	146	8
MoS ₂ @CoO	CC	1 M KOH	325	9
NiS_2/MoS_2	GC	1 M KOH	204	10
OGNs@MoS2-40	-	1M KOH	125	11

Table S4 The comparison of HER performance with state-of-the-art electrocatalysts.

Table S5 TOF of the as-prepared catalysts at overpotential of 200, 250 and 300 mV corresponding to HER.

TOF s ⁻¹ (mV) Samples	η=200	250	300
MoS ₂ /CC	0.00985	0.0190	0.0250
C-N-MoS ₂ /CC-550	0.0269	0.0334	0.0415
C-N-MoS ₂ /CC-600	0.0386	0.0586	0.0861
C-N-MoS ₂ /CC-650	0.0651	0.0889	0.1190
C-N-MoS ₂ /CC-700	0.1130	0.1470	0.1860
C-N-MoS ₂ /CC-800	0.0181	0.0223	0.0272

References

- 1 C. G. Morales-Guio, L. Liardet, M. T. Mayer, S. D. Tilley, M. Grtzel, X. L. Hu, Angew. Chem. Int. Ed., 2015, **54**, 664-667.
- 2 D. X. Ji, S. J. Peng, L. Fan, L. L. Li, X. H. Qin and S. Ramakrishna, J.Mater. Chem. A, 2017, 5, 23898-23908.
- 3 T. Yoon, K. S. Kim, Adv. Funct. Mater., 2016, 26, 7386-7393.
- 4 H. Zhu, J. F. Zhang, Y. zhang, M. L.Du, Q. F. Wang, Adv. Mater., 2015, 27, 4752-4759.
- 5 Y. Q. Yang, K. Zhang, H. L. Lin, X. Li, H. C. Chan, L. C. Yang, Q. S. Gao, ACS Catal., 2017, 7, 2357-2366.
- 6 C. L. Qin, A. X. Fan, X. Zhang, S. Q. Wang, X. L. Yuan and X. P. Dai. J. Mater. Chem. A, 2019, 7, 27594-27602.
- 7 Q. Qin, L. Chen, T. Wei and X. Liu, Small, 2019, 15, 1803639.
- 8 S. Shit, S. Chhetri, S. Bolar, N. C. Murmu, W. Jang, H. Koo and T. Kuila, ChemElectroChem, 2019, 6, 430-438.
- 9 P. Cheng, C. Yuan, Q. Zhou, X. Hu, J. Li, X. Lin, X. Wang, M. Jin, L. Shui and X. Gao, J. Phys. Chem. C, 2019, **123**, 5833-5839.
- 10 P. Kuang, T. Tong, K. Fan and J. Yu, ACS Catal., 2017, 7, 6179-6187.
- 11 V. T. Nguyen, P. A. A. Le, Y. C. Hsu, K. H. Wei. ACS Appl. Mater. Interfaces, 2020, 12, 11533-11542.