Dual-Functional Porous MOFs with Hierarchical Guest Encapsulation for Room-Temperature Phosphorescence and White-Light-Emitting

Jiangyan Yuan⁺, Guangyuan Feng⁺, Jie Dong, * Shengbin Lei* and Wenping Hu

J.Y. Yuan, G.Y. Feng, Dr. J. Dong, Prof. S.B. Lei, Prof. W.P. Hu

School of Science & Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemistry, Tianjin University, Tianjin 300072, China

E-mail: dongjie2018@tju.edu.cn, shengbin.lei@tju.edu.cn.

Figure S1. PXRD of PCN-921:as-synthesized (black line) and stimiulate (red line). Some diffraction peaks of the simulated curve are absent in the as-synthesized curve due to the crystal orientation. This phenomenon is consistent with the previous literature.^[1]

Figure S2. IR of H₈ETTB (red line) and PCN-921 (black line).

Figure S3. PXRD of PCN-921 MOF in different solvents.

Figure S4. TGA of PCN-921 MOF before (black line) and after (blue lline) acetonitrile-exchanged.

Figure S5. Fluorescence lifetime 3.78 ns of PCN-921 at Ex: 300 nm.

Figure S6. Quantum yield 93.6% of PCN-921 MOF.

Figure S7. PXRD of coronene.

Figure S8. Phosphorescent lifetime 3.72 ns of PCN-921 MOF.

Figure S9. The instantaneous phosphor of PCN-921. There is almost no long afterglow.

Figure S10. (a) fluorescence of package x mg-coronene@PCN-921 with different contents. (b) CIE: 5mg coronene@PCN-921 (0.30,0.39) (Brick red), 10mg coronene@PCN-921 (0.28,0.38) (Black), 15mg coronene@PCN-921 (0.26,0.36) (Origin), 20mg coronene@PCN-921 (0.25,0.29) (Red).

Figure S11. Phosphorescence of different amounts of coronene were capsulated.

Figure S12. PXRD of PCN-921 (black line), 5mg coronene@PCN-921 (red line) and 0.06wt% RhB@coronene@PCN-921 (blue line).

Figure S13. ¹H NMR spectra of coronene, RhB, PCN-921, and RhB@coronene@PCN-921 contained DMSO-d6.

Figure S14. IR of coronene, RhB, PCN-921, and RhB@coronene@PCN-921.

Figure S15. SEM-EDS mapping of RhB@coronene@PCN-921.

Figure S16. TGA of RhB, 5mg coronene@PCN-921 and RhB@coronene@PCN-921.

Figure S17. UV-Vis leaching test of RhB@coronene@PCN-921.

Param	Valuen s	Std. Dev.ns	Param	Value	Std. Dev.	Rel.%
τ_1	2.4750	0.06896	B1	1744.662	90.1142	41.20
τ_2	4.6931	0.08466	B2	1312.974	94.8295	58.80
			А	0.182		
			χ^2	1.124		

Table S1. Fluorescence lifetime 3.78 ns of PCN-921 MOF.

Fitting Range Low 198

Fitting Range High 1640

Table S2. The encapsulated	guest molecules in RTP and	WLED MOFs materials.
----------------------------	----------------------------	----------------------

Name	Ligand	Coordinated	Guests	Phospho	LED(Q	Ref.
		metal ions		r-	Y)	
				escence		
				lifetime		
				(ms)		

Zn(II) based		Zn ²⁺	-	2000(10	-	2
coordination				K)		
polymer (CP)						
Eu-Cd-CP		Zn^{2+}	Eu ³⁺	454(RT)	-	3
	ноос	Cd^{2+}			_	3
{(H ₂ Bpy)[Cd ₃	ноос соон	Cd^{2+}	H ₂ Bpy ²⁺ (H	Two	-	4
$(BTC)_2] \cdot 2H_2O$			₂ Bpy=	months		
} _n	НООС СООН		deprotonat	(RT)		
			ed 4,4'-			
			bipyridin)			
ZIF-8 and		Zn^{2+}	N M	0.0184	-	5
MOF-5			Pt-N	(77K)		
	ноос- Соон					
Cu ₄ I ₄ and	N N	Cu^+	Cu ₄ I ₄	0.0152	-	6
$[Cu_3Pz_3]_2$				(50K)		
(Pz=pyrazolat	N=N					
e)						
[Ag ₃ (dmtrz) ₂ (H ₃ C CH ₃	Ag^+	-	25.6	-	7
CN)] _n	N//N			(RT)		
Zn(II)-based	Q N	Zn^{2+}	0	0.15	-	8
MOFs	H		NO	(RT)		
[Cd ₂ (ptz)(squa	N	Cd^{2+}	O I	0.13	-	9
rate)(OH)(H ₂			00	(RT)		
O) ₂] _n			U O			
ZIF-8		Zn^{2+}	-	0.11	White	10
	NN			(RT)	(4.73%)	
$[(Ag_4I_4)(bix)]_n$		Ag⁺	-	1.26	-	11
(b1x=1,4-	7			(10K)		
bis(imidazole-						
1-						
ylmethyl)benz						
ene)						
[AgL] _n ∙nH2O	<u> </u>	Ag^+	-	2.60	White	12
(L=4-	Ğz			(RT)	(10.86%	
cyanobenzoat	<u> </u>)	

e)	N.					
$[Ag(tz)]_{\infty}(tz=$	$\langle \rangle$	Ag^+	-	4.59	-	13
triazole)	N-N			(RT)		
[CdLi(IPA) ₂](CdLi	-	32	-	14
Me_2NH_2)				(RT)		
(IPA =	·		Mn	1.6-10.5	-	15
isophthalic				(RT)		
acid, Me ₂ NH ₂						
=						
dimethylamin						
e)						
[Cd(µ-	0,0	Cd^{2+}	-	250 and	-	16
mimc) ₂ (H ₂ O)]	H ₃ C-N			430		
n	∖′			(10K)		
${[Cd_3(\mu_5-$	0,0	Cd^{2+}		170 and	-	17
btc) ₂ (μ -	0			_ 760		
pbptz)]·2DMF	0 0			- (10K)		
} _n						
[Zn(u-6ani)],	0	Zn ²⁺		430-	-	2
	O			1110(10		2
	₩N			K)		
	-	Cd ²⁺		340-830	-	17
				(10K)		17
				290(RT)		17
				2,0(111)		17
		Pb ²⁺	-	4.17	-	18
[Pb ₂ (EBTC)((10K)		
DMSO) ₃]						
	0 0					
	EBTC					
Cd(II)-based	0,00	Zn^{2+}	-	202(RT)	-	19
		Cd^{2+}	-	75(RT)		19
	-					
[Zn(TPA)(D	нооссоон	Zn^{2+}	pyridine	472(RT)	-	20
MF)]						
	TPA					

Zn(II)/Cd(II)-		Zn^{2+}	-	1796	-	19
based	0 0 0			(77K)		
	Ť			1321		19
				(293K)		
				94		19
				(413K)		
		Cd^{2+}	-	324	-	19
				(293K)		
Zn/Cd-		Zn^{2+}	-	472(293	-	20
terephthalate	$\rightarrow \rightarrow \rightarrow$			K)		
(TPA)	ő 🛁 ö			106	-	20
				(373K)		
				30		20
				(293K)		
				475	-	19
				(293K)		
		Cd ²⁺	-	158(293	-	19
				K)		
Cd-Eu\Tb\Gd-	O O	Cd^{2+}	-	489	-	21
CPs	0			(77K)		
			En Cd. O-	427	-	21
			Eu _x Cu _{I-x} Oγ	(293K)		
				10.54	-	21
				(413K)		
			$\mathrm{Tb}_x Cd_{1\text{-}x} O_7$	312	-	21
				(293K)		
				57.66		21
				(293K)		
Ln-CPs	HOOC	Cd^{2+}	Eu ³⁺	10.54	-	21
				(RT)		
			Tb ³⁺	57.66	-	21
				(RT)		
zinc iso-		Zn^{2+}	rhodamine B	926.56	-	22
phthalic acid	ноос Соон			(RT)		
(IPA)				97.55		22
based MOF				(RT)		
(denoted as						

NH+/Na+/K+-	ноос-Соон	$\mathrm{NH_4^+}$	-	586(RT)	-	23
TPA		Na ⁺		504(RT)		23
	_	K+-		585(RT)	-	23
[Pb ₂ (EBTC)(DMSO) ₃]	ноос соон соон	Pb ²⁺	-	4.17 (RT)	-	18
Cd-TCPA	соон Соон Ноос	Cd ²⁺	[(CH ₃) ₂ NH 2] ⁺ cations, which are generated from in situ decomposit ion of	472 (RT)	White	24
{[Cd2(tipa)2C]		Zn ²⁺	DIVIF -	-(77K)		25
$\frac{1.6 \text{ DMF}}{1.6 \text{ DMF}}$		Lii		(7714)		23
4] 0 2111) [Cd^{2+}	_			25
C@Zn(ZIF-8)	N~N	Zn^+		7400	-	26
	NN			(RT)		
				22400		26
				(RT)		
C@Zn(ZIF-8)	N	Zn ²⁺	Gd[(Pyr)4c yclen] (Pyr pyrenol)	(77K)	-	26
Cd(m- BDC)(BIM)	0	Cd^{2+}		755 (293K)	-	27
				554		27
Cd(m-BDC)		Cd ²⁺	H ₂ O/benzi	698(RT)	_	27
(H ₂ O)	ноос соон		midazole(404(RT)		27
	BDC		BIM)			

References

[1] Z. Wei, W. Lu, H. L. Jiang, H. C. Zhou, Inorg. Chem. 2013, 52, 1164.

[2] J. Cepeda, E. S. Sebastian, D. Padro, A. Rodriguez-Dieguez, J. A. Garcia, J. M. Ugalde and J. M. Seco, Chemical Communications. 2016, 52, 8671-8674.

[3] Y. S. Yang, K. Z. Wang and D. P. Yan, ACS Appl. Mater. Interfaces. 2017, 9, 17400-17408.

[4] X. S. Xing, Z. W. Chen, L. Z. Cai, C. Sun, L. R. Cai, M. S. Wang and G. C. Guo, RSC Adv. 2016, 6, 24190-24194.

[5] T. O. Knedel, S. Buss, I. Maisuls, C. G. Daniliuc, C. Schlusener, P. Brandt, O. Weingart, A. Vollrath, C. Janiak and C. A. Strassert, Inorg. Chem. 2020, 59, 7252-7264.

[6] S. Z. Zhan, M. Li, S. W. Ng and D. Li, Chem.-Eur. J. 2013, 19, 10217-10225.

[7] Y. Ling, Z. X. Chen, Y. M. Zhou, L. H. Weng and D. Y. Zhao, Crystengcomm, 2011, 13, 1504-1508. [8] F. Luo, G. M. Sun, A. M. Zheng, S. X. Lian, Y. L. Liu, X. F. Feng and Y. Y. Chu, Dalton Transactions. 2012, 41, 13280-13283.

[9] A. J. Calahorro, A. Salinas-Castillo, D. Fairen-Jimenez, J. M. Seco, C. Mendicute-Fierro, S. Gomez-Ruiz, M. E. Lopez-Viseras and A. Rodriguez-Dieguez, Inorganica Chimica Acta. 2015, 427, 131-137.

[10] X. G. Yang and D. P. Yan, Chemical Communications. 2017, 53, 1801-1804.

[11] L. Chen, J. Ma, Q. H. Chen, R. Feng, F. L. Jiang and M. C. Hong, Inorganic Chemistry Communications. 2012, 15, 208-211.

[12] M. S. Wang, S. P. Guo, Y. Li, L. Z. Cai, J. P. Zou, G. Xu, W. W. Zhou, F. K. Zheng and G. C. Guo, Journal of the American Chemical Society. 2009, 131, 13572-+.

[13] J. P. Zhang, Y. Y. Lin, X. C. Huang and X. M. Chen, Journal of the American Chemical Society. 2005, 127, 5495-5506.

[14] X. G. Yang and D. P. Yan, Journal of Materials Chemistry C. 2017, 5, 7898-7903.

[15] A. A. Garcia-Valdivia, J. M. Seco, J. Cepeda and A. Rodriguez-Dieguez, Inorg. Chem. 2017, 56, 13897-13912.

[16] J. M. Seco, S. Perez-Yanez, D. Briones, J. A. Garcia, J. Cepeda and A. Rodriguez-Dieguez, Crystal Growth & Design. 2017, 17, 3893-3906.

[17] J. M. Seco, A. Rodriguez-Dieguez, D. Padro, J. A. Garcia, J. M. Ugalde, E. S. Sebastian and J. Cepeda, Inorg. Chem. 2017, 56, 3149-3152.

[18] X. Liu, L. Zhai, W. W. Zhang, J. L. Zuo, Z. X. Yang and X. M. Ren, Dalton Transactions. 2017, 46, 7953-7959.

[19] X. G. Yang and D. P. Yan, Advanced Optical Materials. 2016, 4, 897-905.

[20] X. G. Yang and D. P. Yan, Chem. Sci. 2016, 7, 4519-4526.

[21] Y. S. Yang, K. Z. Wang and D. P. Yan, Chemical Communications. 2017, 53, 7752-7755.

[22] X. G. Yang, X. M. Lu, Z. M. Zhai, Y. Zhao, X. Y. Liu, L. F. Ma and S. Q. Zang, Chemical Communications. 2019, 55, 11099-11102.

[23] Z. C. Cheng, H. F. Shi, H. L. Ma, L. F. Bian, Q. Wu, L. Gu, S. Z. Cai, X. Wang, W. W. Xiong, Z. F. An and W. Huang, Angew. Chem.-Int. Edit. 2018, 57, 678-682.

[24] H. R. Fu, N. Wang, X. X. Wu, F. F. Li, Y. Zhao, L. F. Ma and M. Du, Advanced Optical Materials. 2020, 8, 10.

[25] S. Yuan, Y. K. Deng and D. Sun, Chem.-Eur. J. 2014, 20, 10093-10098.

[26] H. Mieno, R. Kabe, N. Notsuka, M. D. Allendorf and C. Adachi, Advanced Optical Materials. 2016, 4, 1015-1021.

[27] Y. S. Yang, K. Z. Wang and D. P. Yan, ACS Appl. Mater. Interfaces. 2016, 8, 15489-15496.

[28] J. B. Liu, Y. X. Zhuang, L. Wang, T. L. Zhou, N. Hirosaki and R. J. Xie, ACS Appl. Mater. Interfaces. 2018, 10, 1802-1809.