Supporting Information

Tailoring Unique Neural-Network-Type Carbon Nanofibers Inserted in CoP/NC Polyhedrons for Robust Hydrogen Evolution Reaction

Xiaoyan Wang,*^{ab} Yang Fei,^c Wenxi Zhao,^a Yanjuan Sun,^b Fan Dong*^{ab}

- ^a Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
- ^b Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- ^c The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
- * Corresponding author: Xiaoyan Wang (wangxiaoyan_uestc@163.com), Fan Dong (dfctbu@126.com; dongfan@uestc.edu.cn)

Figure S1. The reference electrodes of SCE and Hg/HgO were experimentally calibrated with respect to reversible hydrogen electrode (RHE) in $0.5 \text{ M H}_2\text{SO}_4$ and 1 M KOH respectively.

Figure S2. (a) FESEM image, (b) EDS elemental mapping images of C, N, Co, P, (c)EDS spectrum and element content table of 3-D CNF@CoP/NC.

Figure S3. XRD patterns of Co/NC and CoP/NC.

Figure S4. (a) FESEM image of ZIF-67, (b) FESEM image of CoP/NC, (c) TEM image of CoP/NC,

(d) HRTEM image of CoP/NC.

Catalyst	η ₁₀ (mV)	Tafel slope (mV	Dof
		dec ⁻¹)	Kei.
Mo ₂ C-N-CNFs	167	70	1
MoS ₂ /EEBP	126	68	2
CoP CPHs	133	51	3
CoP-OMC	112.18	56.67	4
Ni ₂ P/CNT	124	53	5
CoP-N-C	91	42	6
FeP GS	123	50	7
WP ₂ nanorods	148	52	8
WP ₂ submicroparticles	161	57	9
Bulk MoP	135	54	10
Ni ₂ P hollow NPs	117	46	11
FeP ₂ /C NPs	220	66	12
FeP NPs@NPC	130	67	13
CoP/CNT	122	54	14
3-D CNF@CoP/NC	64.5	48.6	This work

Table S1. Detailed comparison of the performance of 3-D CNF@CoP-in-NC in 0.5 M H₂SO₄ with those of representative non-noble-metal HER catalysts.

Catalyst	η ₁₀ (mV)	Tafel slope (mV	Ref.
		dec ⁻¹)	
Ni _{0.69} Co _{0.35} P	167	47	15
Ni ₁₂ P ₅ /NF	170	106	16
Ni ₃ S ₂ /NF	220		17
CoP/Cu	94	42	18
NiCoP@NF	155	115	19
CoP/rGO-400	150	38	20
Porous Mo ₂ C	151	59	21
NiCoP/CNF900	130	83	22
FeP NAs/CC	218	146	23
FeP NTs/CC	120	59.5	24
CoP/CC	106	93	25
WP ₂ nanorods	225	84	8
3-D CNF@CoP/NC	105.6	53.9	This work

 Table S2. Detailed comparison of the performance of 3-D CNF@CoP-in-NC in 1 M KOH with those of representative non-noble-metal HER catalysts.

Figure S5. Scan rate dependence of the current densities in the CV curves of 3-D CNF@CoP/ NC (a) and CoP/NC (b) in 0.5 M H₂SO₄, 3-D CNF@CoP/NC (c) and CoP/NC (d) in 1M KOH with scan rates ranging from 10 mV s⁻¹ to 100 mV s⁻¹ at intervals of 10mV·s⁻¹.

Figure S6. FESEM images of 3-D CNF@CoP/NC after chronoamperometric test in 0.5 M H_2SO_4 (a) and 1 M KOH (b).

Figure S7. XRD patterns of 3-D CNF@CoP/NC after long-term test in 0.5 M H_2SO_4 (a) and 1M KOH (b).

Figure S8. (a) FESEM image, (b) EDS elemental mapping images of C, N, Co, P, (c) EDS spectrum and element content table of 3-D CNF@CoP/NC after a long-term test in 0.5 M H₂SO₄.

Figure S9. (a) FESEM image, (b) EDS elemental mapping images of C, N, Co, P, (c) EDS spectrum and element content table of 3-D CNF@CoP/NC after a long-term test in 1 M KOH.

Figure S10. The working curve of Co (a) and P (b) by ICP-OES.

 Table S3. ICP result of different samples.

Figure

S11.

FESEM images of 3-D 3-D CNF@CoP/NC after chronoamperometric test in 0.5 M H_2SO_4 (a) and 1

M KOH (b).

Figure S12. Photograph of electrolytic cell during electrolysis.

Figure S13. FESEM image of 3-D 3-D CNF@CoP/NC before chronoamperometric test.

References

- 1. Z. Y. Wu, B. C. Hu, P. Wu, H. W. Liang, Z. L. Yu, Y. Lin, Y. R. Zheng, Z. Li, S. H. Yu, NPG Asia Mater. 2016, 8, 288.
- 2. T. Liang, Y. Liu, Y. Cheng, F. Ma, Z. Dai, ChemCatChem 2020, 12, 2840-2848.
- 3. M. Xu, L. Han, Y. Han, Y. Yu, J. Zhai, S. Dong, J. Mater. Chem. A 2015, 3, 21471-21477.
- 4. M. Li, X. Liu, Y. Xiong, X. Bo, Y. Zhang, C. Han, L. Guo, J. Mater. Chem. A 2015, 3, 4255-4265.
- 5. Y. Pan, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. A 2015, 3, 13087-13094.
- 6. Z. Zhang, J. Hao, W. Yang, J. Tang, ChemCatChem 2015, 7, 1920-1925.
- 7. Z. Zhang, B. Lu, J. Hao, W. Yang, J. Tang, Chem. Commun. 2014, 50, 11554-11557.
- 8. H. Du, S. Gu, R. Liu, C. M. Li, J. Power Sources 2015, 278, 540-545.
- 9. Z. Xing, Q. Liu, A. M. Asiri, X. Sun, ACS Catal. 2015, 5, 145-149.
- 10. P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J. Y. Wang, K. H. Lim, X. Wang, *Energ. Environ.* Sci. 2014, 7, 2624-2629.
- 11. E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267-9270.
- 12. J. Jiang, C. Wang, J. Zhang, W. Wang, X. Zhou, B. Pan, K. Tang, J. Zuo, Q. Yang, J. Mater. Chem. A 2015, **3**, 499-503.
- 13. Z. Pu, I. S.Amiinu, C. Zhang, M. Wang, Z. Kou, S. Mu, Nanoscale 2017, 9, 3555-3560.
- 14. Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri, X. Sun, Angew. Chem. Int. Ed. Engl.2014, 53, 6710-6714.
- 15. Z. Yin, C. Zhu, C. Li, S. Zhang, X. Zhang, Y. Chen, Nanoscale 2016, 8, 19129-19138.
- 16. P. W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeißer, M. Driess, ACS

Catal. 2016, 7, 103-109.

- 17. L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, *J. Am. Chem. Soc.* 2015, **137**, 14023-14026.
- 18. N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. Int. Ed. Engl. 2015, 54, 6251-6254.
- 19. A. Han, H. Chen, H. Zhang, Z. Sun, P. Du, J. Mater. Chem. A 2016, 4, 10195-10202.
- 20. L. Jiao, Y. X. Zhou, H. L. Jiang, Chem. Sci. 2016, 7, 1690-1695.
- 21. H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu, X. W. Lou, Nat. Commun. 2015, 6, 6512.
- 22. S. Surendran, S. Shanmugapriya, A. Sivanantham, S. Shanmugam, R. Kalai Selvan, *Adv. Energy Mater.* 2018, **8**, 1800555.
- 23. Y. Liang, Q. Liu, A. M. Asiri, X. Sun, Y. Luo, ACS Catal. 2014, 4, 4065-4069.
- 24. Y. Yan, B. Y. Xia, X. Ge, Z. Liu, A. Fisher, X. Wang, Chemistry 2015, 21, 18062-18067.
- 25. J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587-7590.