Control of crystal size determines the electrochemical performance of α -V₂O₅ as an Mg²⁺ intercalation host

Ian D. Johnson^{1,2,3}, Natalie Stapleton¹, Gene Nolis^{3,4}, Dustin Bauer¹, Prakash Parajuli^{3,5}, Hyun Deog Yoo⁶, Liang Yin^{3,7}, Brian Ingram^{2,3}, Robert F. Klie^{3,5}, Saul Lapidus^{3,7}, Jawwad A. Darr^{1*}, Jordi Cabana^{3,4*}

¹ Department of Chemistry, University College London, London, UK.

² Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

³ Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL 60439, USA.

⁴ Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.

⁵ Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA

⁶ Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

⁷ X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.

Figure S1. a) A schematic of the Continuous Hydrothermal Flow Synthesis (CHFS) apparatus with the precursors, concentrations, and temperatures listed for reactions 1) and 2) as described in the text; b) a schematic of the Confined Jet Mixer (CJM).

Table S1. Lattice parameters and crystallite sizes of the V_2O_5 and V_2O_5 -TiO₂ materials calculated from Rietveld refinement, with the figures-of-merit of the fits included. Lattice parameters of the V_2O_5 reference are included for comparison.

Material	<i>a</i> / Å	<i>b</i> / Å	<i>c</i> / Å	V / Å ³	<i>d</i> / nm	R _{wp}	χ^2
PDF 01-072-0433	11.510(8)	4.369(5)	3.563(3)	179.2(5)	-	4.4	-
V ₂ O ₅ sample	11.5119(5)	4.37061(19)	3.56349(15)	179.29(2)	140	13.7	3.5
V ₂ O ₅ -TiO ₂ composite	11.553(3)	4.3716(14)	3.5703(8)	180.32(15)	25	7.1	1.4

Figure S2. Rietveld refinement plots of a) the V₂O₅ sample and b) the V₂O₅-TiO₂ composite, $\lambda = 0.709$ Å.

Figure S3. EDS mapping of the pristine V_2O_5 -TiO₂ composite, displaying a) the electron image, b) the V K- α signals, c) the Ti K- α signals, d) the O K- α signals, and e) the EDS spectrum.

Figure S4. Voltage profiles of the a) discharged and b) charged electrodes used in ex-situ elemental, redox, and structural analysis.

Figure S5. a) TEY XAS for the pristine (green line), discharged (yellow line) and charged (red line) electrodes, corresponding to surface states for the Ti $L_{2,3}$ edges of V_2O_5 -TiO₂ samples. b) TFY XAS for the pristine (green line), discharged (yellow line) and charged (red line) electrodes, corresponding to bulk states for the Ti $L_{2,3}$ edges of V_2O_5 -TiO₂ samples.

Figure S6. EDS mapping of the discharged V_2O_5 -TiO₂ composite, displaying a) an electron image of a discharged particle, b) the Mg-K α signals, c) the V-K α signals, d) the Ti-K α signals, e) the O-K α signals.

Table S2. I	Elemental ratios of	of Mg:V within	different particles	of the discharged	V_2O_5 -Ti O_2 co	mposite found by	/ EDS
analysis, n	ormalized to V co	ontent.					

Particle No.	Mg content	V content
1	0.62	2
2	0.29	2
3	0.32	2
4	0.31	2
5	0.33	2
6	0.11	2
7	0.15	2
8	0.12	2

Table S3. Elemental ratios of Mg:V within different particles of the charged V_2O_5 -TiO₂ composite found by EDS analysis, normalized to V content.

Particle No.	Mg content	V content
1	0.057	2
2	0.084	2
3	0.075	2
4	0.083	2