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1. Supplementary Figures

Supplementary Figure 1. Schematic representation of the construction and flowchart 

of ML water model and functional forms of symmetry functions, neural networks and 

total energy.



Supplementary Figure 2. Distributions of the potential energies of (H2O)n (n = 1~21) 



clusters in the data set.

Supplementary Figure 3. (a) The MAE of force errors of (H2O)n (n = 1 - 4), and (b) 

the comparisons of energies of (H2O)n (n = 1 - 4) clusters calculated by the ML water 

model and ab initio calculations.



Supplementary Figure 4. (a) The MAE of force errors of (H2O)n (n = 5 - 8), and (b) 

the comparisons of  energies of (H2O)n (n = 5 - 8) clusters calculated by the ML water 

model and ab initio calculations.



Supplementary Figure 5. (a) The MAE of force errors of (H2O)n (n = 9 - 12), and (b) 

the comparisons of energies of (H2O)n (n = 9 - 12) clusters calculated by the ML 

water model and ab initio calculations.



Supplementary Figure 6. (a) The MAE of force errors of (H2O)n (n = 13 - 16), and (b) 

the comparisons of energies of (H2O)n (n = 13 - 16) clusters calculated by the ML 

water model and ab initio calculations.



Supplementary Figure 7. (a) The MAE of force errors of (H2O)n (n = 17 - 21), and (b) 

the comparisons of energies of (H2O)n (n = 17 - 21) clusters calculated by the ML 

water model and ab initio calculations.



Supplementary Figure 8. Total time to calculate the energy and force of water clusters 
via the ML water model, the Gaussian 09 program package and the empirical water 
models such as TIP4P. The TIP4P simulations use the ASE codes1.

Supplementary Figure 9. The ML optimized low-lying geometrical configurations of 

(H2O)n (n=2 - 5).



Supplementary Figure 10. The ML optimized low-lying geometrical configurations of 

(H2O)n (n=6 - 10).

Supplementary Figure 11. The ML optimized low-lying geometrical configurations of 

(H2O)n (n=11 - 15).



Supplementary Figure 12. The ML optimized low-lying geometrical configurations of 

(H2O)n (n=16 - 18).



Supplementary Figure 13. The ML optimized low-lying geometrical configurations of 

(H2O)n (n=19 - 21).



Supplementary Figure 14. The temperature dependences of the potential energy of 

(H2O)275, (H2O)475 and (H2O)900 nanoclusters.

2. Trained ML Water Model
The trained ML water model is recorded in the Supplementary File, 
ML_water_model.json, in the JSON format. The keys and their description for the 
model JSON file are listed in the Table S1.

Table S1 The keys and their description for the model JSON file
Key Data Type Description
r_cutoff float the cutoff distance for the calculation of symmetry function 
G2_X Python dictionary object the parameters for the calculation of G2 symmetry function of 

X (H/O) element
G4_X Python dictionary object the parameters for the calculation of G4 symmetry function of 

X (H/O) element
G_X_max 1×27 float array (X=H)

1×30 float array (X=O)
the maximum values for the symmetry functions of X (H/O) 
element

G_X_min 1×27 float array (X=H)
1×30 float array (X=O)

the minimum values for the symmetry functions of X (H/O) 
element

G_X_mean 1×27 float array (X=H)
1×30 float array (X=O)

the mean values for the symmetry functions of X (H/O) 
element

weight_X_0 27×32 float array (X=H)
30×32 float array (X=O)

the values of the weights of the 1st hidden layer of the network 
for X (H/O) element

weight_X_1 32×32 float array the values of the weights of the 2nd hidden layer of the 
network for X (H/O) element

weight_X_2 32×1 float array the values of the weights of the 3rd hidden layer of the 
network for X (H/O) element

bias_X_0 1×32 float array the values of the biases of the 1st hidden layer of the network 
for X (H/O) element

bias_X_1 1×32 float array the values of the biases of the 2nd hidden layer of the network 
for X (H/O) element

bias_X_2 1×1 float array the value of the bias of the 3rd hidden layer of the network for 
X (H/O) element



The atomic energy of a H/O atom can be calculated via the following procedure:
1. calculate the G2 and G4 symmetry function descriptor

;
𝐺2

𝑖 = ∑
𝑗 ≠ 𝑖

𝑒
‒ 𝜂(𝑟𝑖𝑗 ‒ 𝑟𝑠)2𝑓𝑐(𝑟𝑖𝑗)

;
𝐺4

𝑖 = 21 ‒ 𝜉∑
𝑗 ≠ 𝑖

∑
𝑘 ≠ 𝑖,𝑗

[(1 + 𝜆𝑐𝑜𝑠(𝛼𝑖𝑗𝑘))𝜉𝑒
‒ 𝜂(𝑟2

𝑖𝑗 + 𝑟 2
𝑖𝑘 + 𝑟 2

𝑗𝑘)𝑓𝑐(𝑟𝑖𝑗)𝑓𝑐(𝑟𝑖𝑘)𝑓𝑐(𝑟𝑗𝑘)]

;
𝑓𝑐(𝑟𝑖𝑗) = [tanh (1 ‒

𝑟𝑖𝑗

𝑟𝑐𝑢𝑡𝑜𝑓𝑓
)]3

;𝐺𝑖 = [𝐺2
𝑖 , 𝐺4

𝑖]

where the parameters are all included in the r_cutoff, G2_X, and G4_X.
2. normalize the symmetry function descriptor

;𝐺𝑖𝑛 = (𝐺𝑖 ‒ 𝐺𝑚𝑒𝑎𝑛)/(𝐺𝑚𝑎𝑥 ‒ 𝐺𝑚𝑖𝑛)

3. calculate the atomic energy

;𝐿1 = 𝑡𝑎𝑛ℎ(𝐺𝑖𝑛 × 𝑤𝑒𝑖𝑔ℎ𝑡0 + 𝑏𝑖𝑎𝑠0)

;𝐿2 = 𝑡𝑎𝑛ℎ(𝐿1 × 𝑤𝑒𝑖𝑔ℎ𝑡1 + 𝑏𝑖𝑎𝑠1)

;𝐸𝑖 = 𝐿2 × 𝑤𝑒𝑖𝑔ℎ𝑡2 + 𝑏𝑖𝑎𝑠2

4. calculate the potential energy

.
𝐸 = ∑𝐸𝑖

The atomic forces are calculated analytically by . Both items  
𝐹 =

𝑑𝐸
𝑑𝑅

=
𝑑𝐸
𝑑𝐺

×
𝑑𝐺
𝑑𝑅

𝑑𝐸
𝑑𝐺

and  are calculated using the automatic differentiation function of TensorFlow.

𝑑𝐺
𝑑𝑅
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