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Characterization

The morphology and microstructure of all samples were characterized SEM (JEM 2100F)
and TEM (FEI Tecni G20, 200 kV). X-ray diffraction (XRD) with Cu Ka radiation (A = 1.54
A) on the Brook D8 advance equipment to examine the crystalline structures and phase purity
of the samples. Raman spectra was obtained via LabRAM HR Evolution with an excitation
wavelength of 514 nm. The element composition and distribute on of the sample were
characterized by the Energy Dispersive System (EDS) and inductively coupled plasma mass
spectrometry (ICP-MS) detected on the Hitachi S-4800 and Agilent ICPMS7700, respectively.
X-ray photoelectron spectroscopy (XPS) was acquired on Thermo Fisher K-alpha 250Xi to
quantitatively research the chemical and electronic states of the sample elements.
Electrochemical measurements

Electrochemical tests were performed at room temperature on a standard three-electrode
configuration in 1.0 M KOH with Gamry Reference 600 electrochemical equipment. The
working electrode was prepared as follows: 4 mg catalyst and 20 pL Nafion solution (5 wt %)
were dispersed in 1 mL of water/ethanol solution (Vyater : Vethanol = 1:1) by sonicating at least
30 min to form a homogeneous ink. Then 5 puL. of suspensions were coated on glassy carbon
electrode (GCE) with a diameter of 3 mm, and dried in air before measurement. The glassy
carbon (GC) electrode loaded catalysts, Pt foil and saturated calomel electrode (SCE) were
used as working electrode, counter electrode and reference electrode, respectively. The linear
sweep voltammetry (LSV) were detected at same condition with scan rate of 5 mV s with
iR-correction. All the potentials vs. SCE were converted into a standard reversible hydrogen

electrode (RHE) via the Nernst equation: Eryg = Escg + 0.0594pH + 0.245. The electrical



double-layer capacitances (Cg) were calculated by cyclic voltammetry (CV) curves with the
scan rate of 40, 60, 80, 100, 120 mV s°!, respectively. And electrochemical impedance
spectroscopy (EIS) was performed with the frequency ranges from 10° Hz to 0.1 Hz. The
stability of the samples was measured through CV curves for 2000 cycles at 40 mV s™! and
chronoamperometry at 0.52 V vs. SCE.
Density Functional Theory Calculations

The density functional theory (DFT) calculations were carried out by using the Materials
Studio. The exchange—correlation interaction was described by generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional. The energy cutoff
was set to 570 eV. The Monkhorst-Pack k-point mesh was set as 9 X 9 x 6 and 8 x 5 x 3 for
Co(OH), and TF@Co(OH), models, respectively. The convergence criterion in geometry

optimization was set as 10° eV/atom for energy.
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Fig. S1. The molecular structure of tannic acid.
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Fig. S2. The dominant complexation state of TA-Fe at pH > 7.



Fig. S3. SEM images of ZIF-67@Co(OH);.



Fig. S4. TEM images of (a,b) ZIF-67@Co(OH),, (¢) Fe@Co(OH),, (d)

TA@Co(OH),.
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Fig. S5. (a) XPS survey peaks of ZIF-67@Co(OH), and TF@Co(OH),-¢, The high-
resolution scans for ZIF-67@Co(OH), and TF@Co(OH),-¢ in (b) C 1s, (c) N 1s and
(d) O 1s regions. The (1) (2) and (3) respectively represent the ZIF-67@Co(OH),,

TF@Co(OH),-500, and TF@Co(OH),-1000.
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Fig. S6. The chronopotentiometry at 2 mA cm™? of TA-Fe coating.
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Fig. S7. (a,b) Linear sweep voltammetry curves of various electrocatalysts in 1.0 M

KOH solution at a scan rate of 5 mV s!, (c,d) The corresponding Tafel plots.



Fig. S8. The cyclic voltammetry curves of TF@Co(OH)s,,
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Fig. S9. The Electrochemical impedance spectroscopy curves of TF@Co(OH)s,,

TA@Co(OH)5, Fe@Co(OH), and ZIF-67@Co(OH)s.
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Fig. S10. The morphology of TF@Co(OH), after 2000 cycles.
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Table S1. The EDS spectrum and corresponding element contents of Co, Fe, C, N, O

in TA@Co(OH),-500.

Element Wt.% At.%
CK 29.35 48.35
NK 8.66 12.23
OK 20.64 25.52
Fe K 0.49 0.17
CoK 40.86 13.72

Total account 100.00 100.00
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Table S2. The EDS spectrum and corresponding element contents of Co, Fe, C, N and

O in Fe@Co(OH),-5.

2 4 Li] i 10 12

keV
Element Wt.% At.%
CK 17.90 33.72
NK 0.32 0.52
OK 33.28 47.06
Fe K 4.38 1.77
CoK 44.11 16.93

Total account 100.00 100.00

15



Table S3. The EDS spectrum and corresponding element contents of Co, Fe, C, N and

O in Fe@Co(OH),-300.

Element Wt.% At.%
CK 12.87 22.09
NK 5.59 8.23
OK 43 .41 55.93
Fe K 21.84 8.06
Co K 16.28 5.69

Total account 100.00 100.00
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Table S4. The atomic ratio of Co?* and Co** estimated from XPS Co 2p spectra.

Sample The atomic ratio of Co?* and Co’*
ZIF-67@Co(OH), 1.10
TF@Co(OH),-500 1.06

TF@Co(OH),-1000 1.00
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Table S5. The atomic ratio of Fe?" and Fe3* estimated from XPS Fe 2p spectra.

Sample The atomic ratio of Fe** and Fe3*
TF@Co(OH),-500 0.65
TE@Co(OH),-1000 0.44
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Table S6. ICP content result of KOH (1 M) electrolyte for TF@Co(OH),-500 and

Fe@Co(OH), before and after 10 h OER stability in 1.0 M KOH.

Fe (mg/L)
Before After
Fe@Co(OH),
0.07 4.70
Before After
TF@Co(OH),-500
0.07 2.21
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Table S7. The comparison of OER activity between TF@Co(OH),-500 and other

reported Co-besed electrocatalysts in 1.0 M KOH.

Electrocatalyst (mA imz ) (IrilV) mv zecl ) L2
TF@Co(OH),-500 10 317 47 This work
FelCo2-NC 10 356 86.6 [1]
Co/Mo2C@NC-800-2 10 311 131.5 2]
Co-VN@C 10 330 111.0 [3]
NiCo-BDC 10 343 85 4]
Co(OH)2-exf 10 390 57 5]
Fe-Co PBA NPs 10 460 105 [6]
Fe-Co/NPC 10 396 53.55 7]
K-ZIF-67-Ac 50 350 56.87 [8]
Ce02/Co(OH), 10 410 66 9]
C00.89Ca0.11-CPs 10 371 58.3 [10]
Co/CoO@C 10 320 143 [11]
CFO1 10 304 38 [12]
Co@N-CNTF-2 10 350 61.4 [13]
(Co/Fe)(4)O-4 Cubane 10 300 36 [14]
Co(OH),@Ni(OH), 10 330 223 [15]
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