Supporting information

MoS₂ stacking matters: 3R polytype significantly outperforms 2H MoS₂ for hydrogen evolution reaction

Jan Luxa^{a,*}, Lucie Spejchalová^a, Ivo Jakubec^b and Zdeněk Sofer^{a,*}

^a Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic

^b Institute of Inorganic Chemistry of the AS CR, v.v.i., 250 68 Husinec-Řež, Academy of Sciences of the Czech Republic, Czech Republic

e-mail: jan.luxa@vscht.cz; zdenek.sofer@vscht.cz

KEYWORDS: molybdenum sulfide, polytypes, electrochemistry, exfoliation, electrocatalysis, hydrogen evolution reaction

Figure S1. Atomic force microscopy image of A) MoS_2 2H exf. together with C) extracted height profiles. Atomic force microscopy image of B MoS_2 3R exf. together with D) extracted height profiles.

Figure S2. TEM images of A) MoS₂ 2H exf.; B) MoS₂ 3R exf.. Elemental composition maps for C) MoS₂ 2H exf.; D) MoS₂ 3R exf..

Figure S3. HR-TEM images showing the representation of trigonal prismatic (green) and octahedral (red) coordination of central atom in A) and B) MoS₂ 2H exf. And C) and D) MoS₂ 3R exf.

Figure S4. Core-level spectra of Mo 3d regions for A) MoS₂ 2H Bulk and C) MoS₂ 3R Bulk and core-level spectra of S 2p regions for B) MoS₂ 2H Bulk and D) MoS₂ 3R Bulk.

Figure S5. HER stability test after 1000 LSV cycles for A) MoS₂ 2H exf. and B) MoS₂ 3R exf.

Figure S6. Core-level XP spectra after stability test of Mo 3d region for A) MoS₂ 2H exf. and C) MoS₂ 3R exf. and core-level XP spectra of S 2p region for B) MoS₂ 2H exf. and D) MoS₂ 3R exf.

Figure S7. HR-TEM images after 1000 LSV cycles for A) MoS₂ 2H exf. and B) MoS₂ 3R exf.. The insets show selected area electron diffraction patters.

Sample	2H/3R (at. %)	1T (at. %)	MoO ₂ (at. %)	MoO₃ (at. %)
MoS ₂ 2H bulk	85.3	-	-	14.7
MoS₂ 3R bulk			-	-
MoS ₂ 2H exf.	64.1	20.8	-	15.1
MoS ₂ 3R exf.	27.0	55.9	17.1	-
MoS ₂ 2H exf. after 1000 LSV cycles	92.8	7.2	-	-
MoS ₂ 3R exf. after 1000 LSV cycles	86.2	13.8	-	-

Table S1. Concentration of individual chemical states in bulk and exfoliated MoS2 materials obtained by XPS.

Table S2. Comparison of various MoS₂ catalysts for HER based on the polytype.

Catalyst	Electrolyte	Overpotential (at - 10 mA cm ⁻²)	Tafel slope (mV dec⁻¹)	Ref.
Exfoliated 3R MoS ₂	0.5M H ₂ SO ₄	250 mV	58	This paper
Strained 2H MoS ₂	0.5M H ₂ SO ₄	170 mV	60	1
Basal plane activated MoS ₂	0.5M H ₂ SO ₄	300 mV	49	2
Mesoporous 2H MoS ₂	0.5M H ₂ SO ₄	218 mV	62	3
Mesoporous 1T MoS ₂	0.5M H ₂ SO ₄	153 mV	43	3
Modified 1T MoS ₂	0.5M H ₂ SO ₄	271 mV	61	4
Co-doped 1T MoS ₂	1М КОН	240 mV	68	5
Ni and O_2 doped 1T MoS ₂	1М КОН	46 mV	52	6
Graphene/1T MoS ₂ composite	0.5M H ₂ SO ₄	103 mV	46	7
Sulfur intercalated 1T' MoS ₂	0.5M H ₂ SO ₄	205 mV	50	8
1T' monolayers	0.5M H ₂ SO ₄	191 mV	142	9

- 1. H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov and X. Zheng, *Nat. Mater.*, 2016, **15**, 48-53.
- 2. X. Huang, M. Leng, W. Xiao, M. Li, J. Ding, T. L. Tan, W. S. V. Lee and J. Xue, *Adv. Funct. Mater.*, 2017, **27**, 1604943.
- 3. Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song and S. Jin, *J. Am. Chem. Soc.*, 2016, **138**, 7965-7972.
- 4. E. E. Benson, H. Zhang, S. A. Schuman, S. U. Nanayakkara, N. D. Bronstein, S. Ferrere, J. L. Blackburn and E. M. Miller, *J. Am. Chem. Soc.*, 2018, **140**, 441-450.

- 5. F. Ma, Y. Liang, P. Zhou, F. Tong, Z. Wang, P. Wang, Y. Liu, Y. Dai, Z. Zheng and B. Huang, *Mater. Chem. Phys.*, 2020, **244**, 122642.
- 6. Y. Huang, Y. Sun, X. Zheng, T. Aoki, B. Pattengale, J. Huang, X. He, W. Bian, S. Younan, N. Williams, J. Hu, J. Ge, N. Pu, X. Yan, X. Pan, L. Zhang, Y. Wei and J. Gu, *Nat. Commun.*, 2019, **10**, 982.
- 7. K. Zhang, B. Jin, Y. Gao, S. Zhang, H. Shin, H. Zeng and J. H. Park, *Small*, 2019, **15**, 1804903.
- 8. J. Ekspong, R. Sandström, L. P. Rajukumar, M. Terrones, T. Wågberg and E. Gracia-Espino, *Adv. Funct. Mater.*, 2018, **28**, 1802744.
- 9. G.-H. Nam, Q. He, X. Wang, Y. Yu, J. Chen, K. Zhang, Z. Yang, D. Hu, Z. Lai, B. Li, Q. Xiong, Q. Zhang, L. Gu and H. Zhang, *Adv. Mater.*, 2019, **31**, 1807764.