Supporting Information

Boosting the Photothermal Performance of Vacancy MoSe_{2-x}

Nanoflowers for Photoacoustic Imaging Guided Tumor Chemo-

photothermal Therapy

Fei Gao ^{*} ^a, Yuqing Miao ^a, Huijun Ma ^c, Tingbin Zhang ^c, Haiming Fan ^c, Lingyun Zhao ^{* b} a Institute of Integrated Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China E-mail: 1351017@sntcm.edu.cn

b Key Laboratory of Advanced Materials of Ministry of Education of China, Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing 100084, China E-mail: lyzhao@mail.tsinghua.edu.cn

c Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, China **S1.** The calculation of photothermal conversion efficiencies.

Figure S1. The SEM images and FT-IR spectra of MNFs.

Figure S2. The concentration-dependent absorbance and UV-vis-NIR absorption spectra of MNFs.

Figure S3. Blood circulation curve of MNFs.

Figure S4. Biodistribution in mice of MNFs and MNFs-2DG.

Figure S5. Experimental design of the antitumor study.

- Figure S6. The photographs of representative mice.
- Figure S7. The H&E staining results.

S1. Photothermal conversion efficiencies

The photothermal conversion efficiencies were calculated as follows. The total energy balance was described as:

$$\sum_{i} m_i C_{p, i} \frac{dT}{dt} = Q_{in, np} + Q_{in, surr} - Q_{out}$$

where *m* and C_p are the mass and heat capacity of the solvent (water), T is the temperature of the solution respectively. $Q_{in, np}$ is the photothermal energy inputted by the MoSe₂ nanoflowers (MNFs), which can be determined by:

$$Q_{in, np} = I(1 - 10^{(-A_{\lambda})})\eta$$
 2

Where *I* is the laser power used in the experiment, and the $A\lambda$ is the absorbance of the nanoparticles at the used wavelength (808 nm). The η is the photothermal conversion efficiency.

In addition, $Q_{in, surr}$ expressed the heat imput absorbed by the solvent and the container (cuvette), which is descirbed as follows:

$$Q_{in, surr} = Q_{Dis} = hS_{buff} \times (T_{max} - T_{surr})_{buff}$$
 3

where *h* is heat transfer coefficient and *Sbuff* is the surface area of the contained. *T_{max}* is the maximum steady temperature of the solvent, and *T_{Surr}* is the ambient surrounding temperature. The Q_{Dis} was measured independently to be 0.1452 mW.

Besides, Qout is the heat loss to the surrounding:

$$Q_{out} = hS(T - T_{surr}) \qquad 4$$

In the equation, hS can be calculated by determining the rate of temperature decrease when removing the laser. Without the light source, combining eq. (4) with eq. (1) can deduce:

$$\sum_{i} m_{i} C_{p, i} \frac{dT}{dt} = -Q_{out} = -hS(T - T_{surr})$$

With carefully rearrangement and deducement, *t* is expressed as the following equation:

5

$$t = -\left(\frac{m_{buff}C_{p,buff}}{hS}\right) \ln\left(\frac{T - T_{surr}}{T_{max} - T_{surr}}\right) \qquad 6$$

Where two rate constants are defined as $\tau_{\rm s}$

Combining eq. (6), eq. (7) and eq. (8) yields:

$$t = -\tau_{S} \ln \left(\theta \right) \qquad 9$$

In order to get the *hS*, we measured the cooling curve and τ_s can be determined.

At the maximum steady temperature, eq. (10) is 0 and the following is obtained

$$Q_{in, np} + Q_{in, surr} = I (1 - 10^{(-A_{\lambda})}) \eta + Q_{Dis} = hS(T_{max} - T_{surr})$$
 10

Therefore, the final photothermal coversion efficiency can be determined as

$$\eta = \frac{hS(T_{max} - T_{surr}) - Q_{Dis}}{I(1 - 10^{\left(-A_{\lambda}\right)})\eta}$$
11

I is the laser power used during the experiment and *A*⁸⁰⁸ is the absorbance of the nanoparticles at the wavelength of 808 nm. The absorbance of MNFs at 808 nm is 1.215. In addition, the *m* is 0.5 g and the *C* is 4.2 J/g. The 808 nm laser photothermal conversion efficiency (η) of MNFs can be calculated to be 41.7 %.

Figure S1. (a) SEM images of hydrophilic MNFs and (b) FT-IR spectra of hydrophobicity MNFs, hydrophilicity MNFs, 2DG and MNFs-2DG.

Figure S2. (a) The concentration-dependent absorbance of MNFs at 808 nm. (b) The UV-vis-NIR absorption spectra of MNFs before and after NIR irradiation five laser on/off cycles.

Figure S3. (a) Blood circulation curve of MNFs in mice by measuring the Mo concentration in the blood at different time points after intravenous injection.

Figure S4. (a) Biodistribution in mice of MNFs and MNFs-2DG at 1 h and (b) at 24 h after intravenous injection.

Figure S5. Experimental design of the antitumor study in mice bearing subcutaneous 4T1 tumors (n = 5).

Figure S6. The photographs of representative mice for each group acquired at 0, 2, 4, 7, 10, 14, 18, and 22 days.

Figure S7. The H&E staining of tumor, heart, liver, spleen, lung, and kidney of mice from the different groups. Scale bar = $200 \ \mu m$.