Supporting Information

Transparent Polycarbonate Coated with CeO₂ Nanozymes Repel *Pseudomonas aeruginosa* PA14 Biofilms

Olga Jegel,^{1†} Felix Pfitzner,^{1†} Gazanis Athanasios,² Jennifer Oberländer,³ Eva Pütz,¹ Martin Lange,¹ Marcus von der Au⁴, Björn Meermann,⁴ Volker Mailänder,^{3,5} Alexander Klasen,⁶ Ralf Heermann,² Wolfgang Tremel^{1*}

¹ Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany

² Johannes Gutenberg-Universität Mainz, Biozentrum II, Institut für Molekulare Physiologie, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany

- ³ Max Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
- ⁴ Bundesanstalt für Materialforschung und -prüfung (BAM), Abteilung I: Analytische Chemie, Referenzmaterialien, Anorganische Spurenanalytik, D-12489 Berlin, Germany
- 5 Johannes Gutenberg-Universität, Universitätsmedizin, Dermatologische Klinik, Langenbeckstr. 1, D-55131 Mainz, Germany
- ⁶ Park Systems Europe GmbH, Schildkroetstraße 15, DE-68199 Mannheim, Germany

† these authors contributed equally to this work

Table of Contents

Figure	Content	page
Fig. S1	Scanning electron microscope (SEM) image (A) and energy-dispersive X-ray (EDX) spectrum (B) of a CeO ₂ coated polycarbonate surface	S2
Fig. S2	AFM analysis of a non-coated polycarbonate plate	S3
Fig. S3	AFM analysis of a CeO ₂ -coated polycarbonate plate	S4
Fig. S4	AFM nanoparticle size analysis of a CeO ₂ -coated polycarbonate plate	S5
Fig. S5	AFM analysis of a CeO ₂ -coated polycarbonate plate with P. aeruginosa	S6
Fig. S6	AFM analysis of an non-coated polycarbonate plate with a P. aeruginosa biofilm	S 7
Fig. S7	Optical microscopy image of HeLa (A) and $RAW(B)$ cells on the surface of a CeO_2 coated polycarbonate plate	S 8
Fig. S8	Aqueous suspension of NTA-functionalized CeO2 nanorods	S9
Fig. S9	UV/Vis spectra of pristine, plasma-treated and CeO2-coated polycarbonate plates	S10
Fig. S10	Scanning electron microscope (SEM) images of P. aeruginosa PA14 biofilms on a+b) non coated and c+d) with CeO ₂ -coated polycarbonate	S11
Fig. S11	Positive-ionization mode mass spectra of a) 3-oxo-C12-HSL and b) monobrominated 3-oxo-C12-HSL	S12

Fig. S1. Scanning electron microscope (SEM) image (A) and energy-dispersive X-ray (EDX) spectrum (B) of a CeO₂ coated polycarbonate surface.

Fig. S2. AFM analysis of a non-coated polycarbonate plate.

Fig. S3. AFM analysis of a CeO₂-coated polycarbonate plate.

Fig. S4. AFM nanoparticle size analysis of a CeO₂-coated polycarbonate plate.

Fig. S6 AFM analysis of a non-coated polycarbonate plate with a *P. aeruginosa* biofilm.

Fig. S7 Optical microscopy image of HeLa (A) and RAW(B) cells on the surface of a CeO_2 coated polycarbonate plate.

Fig. S8 Aqueous suspension of NTA-functionalized CeO₂ nanorods.

Fig. S9 UV/Vis spectra of pristine, plasma-treated and CeO₂-coated polycarbonate plates.

Fig. S10 Scanning electron microscope (SEM) images of *P. aeruginosa* PA14 biofilms on a+b) non coated and c+d) with CeO₂-coated polycarbonate.

Bromination of the quorum sensing signaling molecule *N*-(3-Oxododecanoyl)-Lhomoserine lactone of *P. aeruginosa*:

N-(3-Oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) is a quorum sensing signaling molecule of *P. aeruginosa*. To confirm the hypothesis of oxidative bromination of the signal molecule, a reaction mixture was mixed with 3-oxo-C12-HSL (0.012 mmol), KBr (0.024 mmol), CeO₂ nanoparticles (2 mg) and H₂O₂ 35% (16 μ L) in methanol and was stirred for an hour.

The reaction mixture was placed on a thin layer chromatography (TLC) plate and was put in a glass beaker with the eluent ethyl acetate:cyclohexane (5:1). The spots were examined by mass spectrometry (TLC MS). The results from the mass spectra are displayed in Fig. S11.

Fig. S11 Positive-ionization mode mass spectra of a) 3-oxo-C12-HSL and b) monobrominated 3-oxo-C12-HSL.