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Validation by IR spectroscopy of the dendron grafting. The IR spectra of the NP after grafting (NP@D2-2P) 
are compared to the one after synthesis (NP@OA) and the one of the D2-2P molecules (Figure S1). “Spheres” 
corresponds to NS22 and “octopods” to NO28 The IR spectrum of the D2-2P molecule presented various P-O 
bands with a P=O band appearing at 1200 cm-1 and P-OH bands at 1027 and 995 cm-1 1–4. An intense C-O-C band 
is detected at 1110 cm-1 and the C=O band appears at 1700 cm-1. After the grafting step, the carboxylate bands 
observed on the NP@OA at around 1500 and 1400 cm-1 are replaced with the C=O band of the D2-2P at 1700 
cm-1 and N-CO at 1640 cm-1. The alkyl chain bands at 2900 and 2800 cm-1 have almost completely disappeared. 
The C-O-C and the P=O bands are not observed such as P-OH bands due to the formation of the P-O-Fe (992 cm-1) 
bonds3. The disappearance of the three bands indicated a strong coordination of the dendron at the NPs surface. 
The weak band at 716 cm-1 from the precursor still observed before dendronisation is not seen after.

Figure S1. FTIR spectra of the NPs before (NP@OA, plain) and after (NP@D2-2P, dashed) grafting and of the 
D2-2P dendron (gray) for a) NS22 and b) NO28 
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Figure S2. XRD refinement of NS22 a), NO28 b) (sharp peaks are attributed to high-purity silicon powder (a = 
0.543 082 nm) used as an internal standard), IR spectra of NS22 (red) and NO28 (green) c) and typical IR spectra 
of oxidized magnetite and maghemite d).
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Figure S3. HRTEM images of NO18 nanoparticles

High Resolution-Magic Angle Spinning (HR-MAS) measurements. This method is used in solid state NMR 
spectroscopy and consists in performing NMR measurement by spinning the sample at the magic angle (about 
54.74°) with respect to the magnetic field orientation. This allows to narrow the signal usually broadened by the 
presence of magnetic atoms. The HR-MAS NMR spectra (Figures S3) evidenced the presence of the dendritic 
molecules on the surface of the NPs, whatever their shape. However, very weak supplementary peaks were 
observed in the range 0.9 -2.5 ppm, which were attributed to free stearate or oleic acid. The peaks are shifted in 
the presence of the NPs but this is an artefact due to the structure of the solvent 5 as alkyl chains are probably not 
fully extended in D2O which is much more polar than CDCl3. The weak intensity of the stearate / oleic acid signal 
indicated that only traces were present on the surface of the NPs. 
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Figure S4. TOP: 1H HR-MAS spectra of NS22 (purple), compared to 1H NMR spectra of the dendron molecule 
in D2O (blue), NaSt in CDCl3 (red) and OA in CDCl3 (green). BOTTOM: Enlargement of the top figure.
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Figure S5. Mössbauer spectra at 300 and 77K of nanospheres (NS22) (left), octopods (NO18) (right) 
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Figure S6. EELS analysis of sample NS22. EELS signals corresponding to the core and the surface of NPs 
extracted using independent component analysis (ICA). The residual contributions contain the signal from the 
ligand molecules around the NPs.
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Figure S7. ZFC/FC curves under 4 kA·m-1 (ZFC curve – red, FC curve blue) For samples a) NS18 b) NS22, c) 
NO18 d) NO28. Differential ZFC magnetization curves with respect to the temperature for samples e) NS22 and 
f) NO28 obtained at external fields of 4, 8 and 16 kA·m-1.
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Figure S8. ZFC hysteresis curves measured at 300 and 5 K, and FC hysteresis loop at 5 K measured at 0H=3T 
for samples (a) NS18, (b) NO18, (c) NS28 and (d) NS22. 
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Figure S9. Temperature dependence of the exchange bias (Hbias) effect for NO18 and NS22

8



NO18  NS22 

0 50 100 150 200 250 300

0

5

10

15

20

25

30

 0H
C (m

T)

T (K)

a)

0 50 100 150 200 250 300

-10

0

10

20

30

40

50

b)

 0H
C (m

T)

T (K)

Figure S10. Temperature dependence of 0HC for samples NO18 (a), NS22 (b), showing the fit to Eq. 2 
(continuous line).

For non-interacting nanoparticles, the relationship between Hc and particle size is given by:

 Eq. 1𝐻·𝐻 ‒ 1
𝑐0 = 1 ‒ (𝑑𝑆𝑃𝑀/𝑑)1/2

where dSPM is the particle size associated to the superparamagnetic threshold, and HC0 is the value to which HC 
tends to decrease when the particle size d tends to dSPM. NPs with a diameter equal to DSPM do not present coercivity 
when temperature has reached the blocking temperature (TB), as stated by the Kneller equation:

, or  Eq. 2𝐻·𝐻 ‒ 1
𝑐0 = 1 ‒ (𝑇/𝑇𝐵)𝛽 𝐻 = 𝐻𝑐0 ‒ (𝐻𝑐0/𝑇𝛽

𝐵)𝑇𝛽

Where the factor  originally equals 0.5. As seen for other fine particle systems6, none of the samples do fit to Eq. 
2. The main disagreement comes from the exponent , which in most of the studied samples is 0.3 upon fitting the 
experimental data to Eq. 2. This discrepancy is due to the unavoidable existence of a size distribution in all NPs 
and the equivalent TB distribution.  values are such that allow to obtain reasonable values of HC0 and TB that are 
also consistent with those extracted from ZFC/FC curves.

Table S1. Results from fitting the temperature evolution of coercivity to a modified Kneller relationship (Eq. 2) 
for samples NS22, NO18.

Sample HC0 (mT) TB (K) 

NS22 56.6 185.3 0.3

NO18 31.0 237.1 0.3
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Figure S11. Magnetization curves of dendronized a) NS18, b) NS22, c) NO18 and d) NO28 at 96 kHz as a function 
of concentrations and different media tuning the viscosity. 

Assessment of the effective anisotropy
1. Assessment of shape anisotropy
The shape anisotropy of a spherical particle is determined by the difference of the oblate and prolate 
demagnetization factors Nb and Na, respectively, i.e. Nb – Na depending both on the width length ratio. Considering 
uniaxial anisotropy, the shape anisotropy constant is calculated as follows:

𝐾𝑢𝑠 =
1
2

𝜇0(𝑁𝑏 ‒ 𝑁𝑎)𝑀2
𝑠

For perfect cubes and spheres the difference is zero. Thus, a uniform cube has no shape anisotropy. Neglecting the 
shape effect of the edges and approximating the cuboid as an ellipsoid, the different Nb and Na can be found in the 
Figure 4.5 of ref. 7. The anisotropy constant is then calculated as follows:

                                          
𝐾𝑢𝑠 =

1
2

4𝜋 10 ‒ 7(0.3869 ‒ 0.2773)(480 103)2   
𝑉𝑠
𝐴𝑚

 
𝐴2

𝑚2

𝐾𝑢𝑠 = 15866   
𝑉𝑠
𝑚

 
𝐴

𝑚2
= 15866

𝐽

𝑚3

The differences between a nearly spherical ellipsoid and a cuboid of the same dimensions should not be so big8. 
This makes clear that the surface and uniaxial shape anisotropy are of equal importance.
2. Crystalline anisotropy
Here one can take a literature value. Figure 3-7 in 7 give following values:

K1 = -13500 J/m3
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K2 = -2800 J/m3

Both values are for room temperature. The constants c have a non-linear temperature dependence which is different 
for both. The calculation of a total anisotropy budget makes only sense if it refers to a certain temperature. Note 
that K1 becomes zero at the isotropic point, i.e. 135 K, and below that it becomes positive.

3. Surface anisotropy
In order to estimate a value of the surface anisotropy first an approach is followed which relies on the internal 
demagnetizing field distribution of a uniform cube which is inhomogeneous due to shape9.
Albeit the average demagnetization factor of a cube (like for a sphere) is Nave = 1/3, the demagnetization factor 
near the cube faces and edges is considerably different from 1/3. Dunlop et al.9 have calculated the demagnetization 
factors in inside a uniform cube. Figure 4 in ref9 shows characteristic demagnetization factor profiles. 
The maximal N appears at the center of the surface plane perpendicular to Ms. The smallest occurs at the edge of 
surface plane parallel to Ms. Using this difference, one can calculate a surface anisotropy constant caused by shape 
effects of the cube: 

                                        
𝐾 𝑉

𝑠𝑠 =
1
2

4𝜋 10 ‒ 7(0.52049 ‒ 0.17572)(480 103)2   
𝑉𝑠
𝐴𝑚

 
𝐴2

𝑚2

𝐾 𝑉
𝑠𝑠 = 49910   

𝑉𝑠
𝑚

 
𝐴

𝑚2
= 49910

𝐽

𝑚3

As this value refers to the volume, one has to revert it into a surface value, i.e. dividing by the surface to volume 
ratio. For cuboids with width w, length l, and depth d = w the above  becomes:𝐾𝑠𝑠

𝐾𝑠𝑠 = 𝐾 𝑉
𝑠𝑠 

1

2(2
𝑤

+
1
𝑙 )

and with w = 18.6 nm and l = 23.3 nm:

𝐾𝑠𝑠 = 49910
1

2( 2

18.6 × 10 ‒ 9
+

1

23.3 × 10 ‒ 9)
      

𝐽

𝑚3
 𝑚

𝐾𝑠𝑠 = 1.658 × 10 ‒ 4 𝐽

𝑚2

This calculation of Ks is for a uniform cube, but for octopods the center of each surface is dented towards the 
nanoparticle center. For not too strongly deformed cubes, such as the synthesized octopods are, it is reasonable to 
assume that the difference between the maximal and the minimal N is similar to that of the uniform cube, but with 
the difference that the N profiles in Fig. 4 of ref.8 have a more pronounced curvature. However, the surface 
anisotropy of nanoparticles is not only related to shape effects but is also caused by effects such as broken bonds, 
charge transfer, oxidation and reduced crystalline symmetry. As it is difficult to separate these different effects, 
surface anisotropy constants of MNPs are generally experimentally derived from the effective anisotropy constant 
via blocking temperature or ferromagnetic resonance measurements. According to Bødker et al.10, the effective 
volume anisotropy is:

𝐾𝑒𝑓𝑓𝑉 = 𝐾𝑣𝑉 + 𝐾𝑠𝑆   ↷    𝐾𝑒𝑓𝑓 = 𝐾𝑣 +
𝑆
𝑉

𝐾𝑠

with V and S being volume and surface, respectively. For cuboids with three different space dimensions, i.e. width 
w, length l, and depth d, the formula above becomes:

    𝐾𝑒𝑓𝑓 = 𝐾𝑣 + 2(1
𝑤

+
1
𝑙

+
1
𝑑)𝐾𝑠
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Assuming that we can approximate the octopods with cuboids and that w equals d, the formula for Keff simplifies 
to:

    𝐾𝑒𝑓𝑓 = 𝐾𝑣 + 2(2
𝑤

+
1
𝑙 )𝐾𝑠

The ZFC/FC measurements of the octopods (Fig. 13a in the main manuscript) show that the blocking temperature 
TB is at or above room temperature. Assuming a TB of 300 K, the effective anisotropy would calculate as follows:

𝐾𝑒𝑓𝑓 =
𝑇𝐵  25  𝑘𝐵

𝑉
=

𝑇𝐵  25  𝑘𝐵

𝑤2𝑙

𝐾𝑒𝑓𝑓 =
300 25 1.38 × 10 ‒ 23

(18.6 × 10 ‒ 9) 2   23.3 × 10 ‒ 9
  

𝐾    𝐽

𝑚3 𝐾
= 12840 

𝐽

𝑚3

KS can then be calculated, with Kv = K1:

𝐾𝑠 =
𝐾𝑒𝑓𝑓 ‒ 𝐾1

2(2
𝑤

+
1
𝑙 )

𝐾𝑠 =
12840 ‒ ( ‒ 13500)

2( 2

18.6 × 10 ‒ 9
+

1

23.3 × 10 ‒ 9)
  

𝐽 𝑚

𝑚3
= 8.8 × 10 ‒ 5 𝐽

𝑚2

Which accounts for about the half of the shape-induced surface anisotropy.

4. Total anisotropy
The total anisotropy Ktot at room temperature would be:

                                                            𝐾𝑡𝑜𝑡 = 𝐾1 + 2(2
𝑤

+
1
𝑙 )(𝐾𝑠 + 𝐾𝑠𝑠) + 𝐾𝑢𝑠

𝐾𝑡𝑜𝑡 =‒ 13500 
𝐽

𝑚3
+ 2( 2

18.6 × 10 ‒ 9 𝑚
+

1

23.3 × 10 ‒ 9 𝑚)(8.8 × 10 ‒ 5 𝐽

𝑚2
+ 1.658 × 10 ‒ 4 𝐽

𝑚2) + 15866
𝐽

𝑚3

𝐾𝑡𝑜𝑡 = 78732
𝐽

𝑚3

Here it is assumed that all anisotropic effects are along the same axis, i.e. the easy magnetization axis.
Note that below 160 K the total anisotropy constant, because:
K1 becomes larger even zero or positive;
Kss and Kus increase due to the temperature dependence of the saturation magnetization.
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Dynamic Light Scattering (DLS) measurements. After the grafting step, the colloidal stability in water has been 
evaluated by Dynamic Light Scattering (DLS) (Figure S11). Results on dendronized IONPs with the highest IONP 
size are given here. Dendronized NS22 presented no sign of aggregation with a monomodal hydrodynamic size 
distribution centred at about 28 nm, larger than the TEM size of NPs of about 22 nm which may be attributed to 
the dendron coating and solvation layer.
For octopod-shaped NPs, this measurement is an indication of a possible aggregation but cannot be considered as 
a precise measurement of the hydrodynamic diameter. The optical model used to calculate the size distribution 
considered spherical NPs. Anisotropic NO28 may be present in front of the laser under different orientations that 
can be longer than the edge length or the diameter. Therefore, the values of hydrodynamic diameter are just given 
for comparison and cannot be considered as relevant. Dendronized NO28 presented a monomodal distribution in 
water centred at 32 nm. In conclusion, dendronized NPs display an average hydrodynamic diameter smaller than 
100 nm.

Figure S12. DLS measurements of samples NS22 and NO28 in different physiological media.

Figure S13. SAR values for spherical NS18 and octopod NO18 NPs measured at 1 mg/ml in aqueous suspension. 
No significant heat loss was measured for spherical NPs at 4 kA·m-1. Data for NO18 at 16 kA·m-1 could not be 
fitted as evaporation was too important due to the high temperature achieved.
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Figure S14. SAR values for spherical NS18 and octopod NO18 NPs measured as decreasing concentration from 
1 mg/ml in aqueous suspension measured at 796 kHz and 16 kA·m-1. SAR value for NO18 at 1 g.l-1 may not be 
accurate as evaporation occurred due to the elevated temperature.

 

Figure S15. TEM images of nanospheres (left) and octopods (right) showing a spontaneous alignment upon 
deposition on TEM grids.
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Figure S16. IR spectra of dendronized NO28 after the coupling of glucose (arrows: IR bands of glucose).
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Figure S17. Cell viability of Huh-7 cell monolayer as a function of the NPs shapes, 10 nm spheres (NS10: grey), 
NS22 (green) and NO28 (red)
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Figure S18. Control experiments on Huh-7 cells without loaded NPs. Cells were labeled with Annexin V-FITC 
(green), PI (red) and hoechst (blue).

To further check the in vivo magnetic hyperthermia properties of dendronized octopods NO28, they have been 
injected intratumoraly in mice. After having performed the experiments detailed in experimental part, the tumor 
growth was calculated as (Tumor Volume)/(Initial Tumor Volume) and is given in Figure S18 . Day 2 corresponds, 
as can be seen in the experimental design scheme 1, to the measurements made after the last of the three MH 
treatment days. Day 4 corresponds to the measurements made 48h after the last MH treatment. The different 
experimental conditions were:
BH: 4 mice with the tumor, without MNPs and with magnetic field exposure
BNPs: 3 mice with the tumor, with MNPs and without magnetic field exposure
HNPs: 3 mice with the tumor, with MNPs and with magnetic field exposure.
At day 4, two of the mice of the HNPs group and 1 of the BNPs group had to be sacrificed because of tumor 
ulceration. Although tumor volumes were not too large, this ulceration takes place because skin stretching cannot 
match tumor growth rate.

Figure S19a. Evolution of tumor growth in conditions detailed above.

PERLS staining was performed in order to detect NPs in images from tissue sections (Figure S18b-c). It can be 
seen that NPs are mainly in the extracellular matrix, but some can be detected in the tumor. However, no effects 
in tumor inhibition growth have been detected in mice with NPs after AMF exposure. NO28 NPs were very stable 
and easy to inject, but the main problem is that they stayed in the extracellular matrix instead of being internalized 
in the tumor. 
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Figure S19b. PERLS images of tumors of the group BNPS (with NPs without AMF)

Figure S19c. PERLS images from tumors of the group HNPS (with NPs with AMF)
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