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1. Contact resonance force microscopy method for nanomechanical 
measurements

Contact resonance force microscopy (CRFM) measures the mechanical properties of a 

sample by tracking the contact resonance frequency change using the dual AC resonance 

tracking (DART) mode1. As D.C. Hurley et al. reported1-3, the system is either mechanically 

excited by shaking the cantilever or vibrating the sample using an actuator. During the scanning 

process, the force between tip and sample is kept constant and the change of contact resonance 

frequency is tracked. A shift in resonance frequency corresponds to a change of contact 

stiffness (elastic modulus) of the sample. A stiffer sample area exhibits a shift to higher 

resonance frequencies while a softer sample shifts to lower values. In this method, the tip and 

sample are in contact, as shown in Fig. S1. A more extensive discussion on CRFM can be found 

elsewhere1–4. 

 

Figure S1. Important tip parameters for the determination of the elastic modulus with spring 
constant klever, length L of the cantilever, and tip position ratio γ.

Here, we want to describe the extraction of the elastic modulus from CRFM measurements 

via the method by D. C. Hurley et al.5. The AFM cantilever spring constant klever is connected 

to the length L, the distance from the end of the cantilever to the tip L1, the width w, the 

thickness t, and the elastic modulus Ei by:
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See Fig. S1 for the cantilever parameters. The tip-sample interaction is defined by a contact 

stiffness with the spring constant k. The normalized contact stiffness k/klever is given by:
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where xn is the wavenumber of the contact resonance frequency fn; γ is the tip position ratio 

describing the relationship of L and L1 as and D is given by:1L
L
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The elastic properties of the sample can be determined using the Hertzian model. The 

contact stiffness k between the tip and sample is given by: 

2 rk aE

with the contact radius a: 
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where FN is the applied load to the tip, R is the tip radius. The relationship between reduced 

elastic modulus Er and the sample elastic modulus E is represented as: 
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where v and vi are the Poisson ratio of the sample and the tip, respectively. The elastic modulus 

values E in the main text can then be calculated by using equation S1-S6 and the cantilever 

specifications as well as Poisson ratios of the aragonite and biopolymer (all values are 

presented in Table S1). The spring constant of the tip is determined via the thermal method in 

the MFP-3D Infinity system (Asylum Research, USA).
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Table S1. Tip specifications and sample Poisson ratio values that used in this study

Parameters Value Reference

Spring constant klever (N/m) 33

Tip radius R (nm) 7

Uncoated tip 

AC160TSA-R3 

(Asylum Research, USA) Poisson ratio vi 0.17

6

Aragonite 0.16
Sample poisson ratio v

Biopolymer 0.4
7

2. Force-distance curve – Hertzian model

Figure S2. Force-distance curves of (a) standard fused silica, (b) aragonite, and (c) biopolymer 
areas. The zoom-in to the fitted regions by the Hertzian model to determine the elastic modulus.

Figure S2 (a) represents the force-distance measurements of fused silica (Bruker, USA)  

using a diamond tip (NM-RC-C, Bruker USA) with force constant k = 470 N/m. The elastic 

modulus was obtained by fitting the force-distance curve using the Hertzian model, which is 

embedded in the Asylum software. To determine accurate elastic modulus values the 

identification of the contact point is crucial8–10. The Asylum software defines the contact point 

when the Set Point deflection voltage is equal to the cantilever Set Point deflection value. This 

is the point when the cantilever starts to experience positive deflection due to the applied force 



5

from the piezo. This approach has led to good results for AFM-based force-distance curves8,11. 

Using the Asylum software to fit the fused silica force-distance curves results in an elastic 

modulus value of 73.05 GPa. This is in good agreement with the manufacturer values of fused 

silica (nominal elastic modulus of 72.9 GPa12) and thus, the same cantilever values can be used 

for all force-distance curves. An example of the biopolymer and aragonite area is shown in Fig. 

S2(b) with a representative elastic modulus of 25.88 GPa for the biopolymer and 68.01 GPa 

for the mineral area.

3. AFM-based nano-indentation – Oliver-Pharr method

An AFM system can also be used as a nanoindenter to investigate the mechanical properties 

of specimens. Figure S3 schematically represents a single cycle nano-indentation (load-unload 

curves). From these curves, we can extract mechanical properties as well as different energy 

scales like elastic or plastic energies. The elastic energy UE is given by the area below the 

unloading curve and the plastic energy UP corresponds to the difference in area between the 

loading and unloading curve (see Fig. S3). To determine the mechanical properties (hardness 

and elastic modulus) more steps are required and are discussed in the next section.
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Figure S3. Schematic load-displacement curve. All parameters are explained and discussed in 
the text.

The most common method to determine the hardness and reduced modulus from an 

indentation cycle is Oliver-Pharr 13–15. The loading force P is given by:

( )m
fP a h h 

where h is the total indentation depth, hf is the final displacement after completing the 

unloading process, a and m are the fitting parameters associated with the indenter shape.

The hardness (H) can be determined as the ratio of the maximum loading force (Pmax) and 

the contact area between the indenter tip and the specimen at the maximum load (A):

maxPH
A



The contact area A can be calculated as:

224.5 cA h

where hc is the contact indentation depth determined from load-displacement curves

The reduced modulus (Er) is the combined modulus of the indenter tip and the specimen and 

is determined from the relationship

2r
SE

A




where S is the initial unloading stiffness determined by the slope of the unloading curve dP/dh 

at the maximum load (see Fig. S3). Then the elastic modulus of the sample can be determined 

by the Hertzian model using equation S6.

Figure S4(a) represents the topography of a fused silica sample (Bruker, USA) after a nano-

indentation cycle with 30 µN. All of the nano-indentations are done in a Smart SPM 1000 

system (AIST-NT, USA) using a single crystal diamond NM-RC-C probe (Bruker, USA) with 

elastic modulus and Poisson's ratio of 1164 GPa and 0.0791, respectively16. The cross-sectional 

profiles of the indentation in Fig. S4(b) show the indented depth and width of 8.45 nm and 156 

nm, respectively. The elastic modulus E is characterised by fitting the unloading curves in Fig. 

S4(c) using the Oliver-Pharr and Hertzian model, resulting in a value of 70.64 GPa. This is 

(S7)
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again very similar to the manufacturer values of fused silica and shows the validity of our 

AFM-based nano-indentation measurements.

Due to the software of the AFM system, we had to perform load-unload curves without a 

hold period. Such a hold period can be important to reduce the impact of further creep after the 

maximal load on the unloading curve17. This can lead to negative slopes (‘nose’ shape) in the 

unload curve and thus wrong slope values that are important for the elastic modulus 

calculations. We have checked all indentation measurements and have not found any 

significant negative slopes in the unloading curves (also see Fig. S4 and Fig. S5). This could 

come from the fact that there is less creep in our experiments due to a lower maximum load in 

the AFM-based nano-indentation in comparison to standard indenter measurements. Due to the 

accuracy of our reference measurements on silica, we assume that our measurements are only 

slightly impacted by creep and the determination of the slope gives adequate values.

Figure S4. (a) Topography, (b) cross-sectional profiles along the black, red, and blue lines 
corresponding to the image (a); (c) Load-displacement curves of the nano-indentation on 
commercial fused-silica (Bruker) with the loading force at 30 µN.
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Figure S5. Load-displacement curves of aragonite and biopolymer regions at the same loading 
force of 30 µN.

Figure S5 shows examples of nano-indentation load-displacement curves on aragonite and 

biopolymer regions. The extracted values from the unloading curves and the calculated 

mechanical properties of Fig. S5 are shown in Table S2. These values provide a good example 

for the biopolymer and aragonite regions, however, all values mentioned in the main 

manuscript are average values over ten indentations for each area. Even though the maximum 

load in the aragonite and biopolymer area with 30 µN is the same, different maximum 

displacements hmax with 16.59 nm and 20.98 nm occur. This leads to a smaller contact area for 

the aragonite compared to the biopolymer regions and thus to higher hardness and elastic 

modulus in this area. The jump-like feature that can be seen at the maximum load in the 

biopolymer curve in Fig. S5 appears in roughly 1/3 of our measurements. It is a result of a 

maximum change in tip displacement by 3 Å. AFM-based nano-indentation measurements are 

less stable and more prone to noise, which can lead to small changes in height and rougher 

indentation curves. Thus, we assume this artifact to be a result of the stability of our system, 

which should not impact the accuracy of our measurements due to the small change in 

displacement.
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Table S2. Data fitted to the nano-indentation unloading curves of aragonite and biopolymer in 
Fig. S5 using the Oliver-Pharr method

Parameters Aragonite Biopolymer

Slope S 3198 2374

Load Pmax (µN) 30 30

Area A (µm2) 1.66 x 10-3 3.79 x 10-3

Hardness H (GPa) 1.81 0.79

Reduced modulus Er (GPa) 69.62 34.16

Elastic modulus E (GPa) 72.12 29.56

Elastic energy UE (nJ) 1.86 x 10-4 9.25 x 10-5

Plastic energy UP (nJ) 1.29 x 10-4 3.72 x 10-4
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