Supporting information

Bifunctional Flexible Fabrics with Excellent Joule Heating and Electromagnetic Interference Shielding Performance Based on Copper Sulfide/Glass Fiber Composite

Binguo Liua,d, Qi Zhangb,d, Yuanhui Huanga, Dong Liub, Wei Pana,c,*, Yunchao Mua, Xiaozhe Chenga, Yajie Qinc

a School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China.

b School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

c Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 451191, China.

& Binguo Liu and Qi Zhang contributed equally to this work.

Corresponding Authors:

Wei Pan, Email: doctorpan0152@163.com

Yunchao Mu: Email: yunchaomu@126.com
Figure S1. XRD patterns of the CuS/GFs-1 wt%, CuS/GFs-2 wt% and CuS/GFs-4 wt%, respectively.
Figure S2. SEM image and elemental mappings of CuS/GFs-1 wt% (a and b), CuS/GFs-2 wt% (c and d) and CuS/GFs-4 wt% (e and f), respectively.
Figure S3. Mass loading for the CuS and electrical resistivity of CuS/GFs obtained at various concentrations. (b) I-V curve of as-prepared each CuS/GFs. (c) Electrical resistivity of CuS/GFs-3 wt% before and after 0.5 h ultrasonic process.
Figure. S4 (a) Joule heating performance of CuS/GFs at the constant supplied voltage of 1.2 V. (b) Corresponding IR camera images of each sample. (c) Experimental data and linear fitting of saturation temperature versus U^2 of as-prepared each nanocomposite. (d) the XRD of CuS/GFs after running under 1.5V working voltage. (e) electrical conductivity of CuS/GFs after a long-term stability test. (f) The optical photo of CuS/GFs-3 wt% textile can withstand a weight of 2000 g.
Figure S5. EMI SE performance of CuS/GFs textiles obtained at various concentrations.
Figure S6. (a and b) SEM images, EDX spectrum and element analysis (c) of CuS/GFs-3 wt% textile after long term stability measurement. (d) XRD pattern of CuS/GFs-3 wt% textile before and after long-term stability test. (e) Joule heating performance of CuS/GFs-3 wt% at the constant supplied voltage of 1.2 V before and after 0.5 h ultrasonic process. (f) Corresponding IR camera images before-after
Figure S7. (a) SEM images and electrical resistivity of CuS/GFs-3 wt% textile before-after ultrasonically cleaned. (b) Electrical resistivity of CuS/GFs- 3 wt% textile before and after 0.5 h ultrasonic process. (c) and (d) IR camera images and EMI SE performance of CuS/GFs- 3 wt% textile before and after 0.5 h ultrasonic process.
<table>
<thead>
<tr>
<th>Heaters</th>
<th>Electrical property</th>
<th>Voltage (V)</th>
<th>Temperature (°C)</th>
<th>Response time (s)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuS/GFs</td>
<td>2.9 Ω cm⁻¹</td>
<td>1.5</td>
<td>209</td>
<td>10</td>
<td>This work</td>
</tr>
<tr>
<td>CNT/cellulose aerogel</td>
<td>0.3 Ω sq⁻¹</td>
<td>1.8</td>
<td>70.2</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>AgNWs-TPU</td>
<td>0.02Ω/mm</td>
<td>24</td>
<td>111.8</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>CNT cotton fabrics</td>
<td>2.5KΩ</td>
<td>40</td>
<td>96</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>GFs graphene films,</td>
<td>6×105S m⁻¹</td>
<td>5</td>
<td>424</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Cu/RGO-PBO fibers</td>
<td>0.16Ω cm⁻¹</td>
<td>6</td>
<td>133</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>rGO/PET fabric</td>
<td>4.9 Ω·cm</td>
<td>6</td>
<td>138.64</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Graphene Filters</td>
<td>-</td>
<td>3</td>
<td>80</td>
<td>240</td>
<td>7</td>
</tr>
<tr>
<td>graphene quartzfiber</td>
<td>0.2–10 kΩ/sq</td>
<td>24</td>
<td>980</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>G/WPU composites</td>
<td>700-500 S m⁻¹</td>
<td>10</td>
<td>75.4</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>polypyrrole/knitted cotton</td>
<td>55.9Ω</td>
<td>8</td>
<td>51</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>G/WPU composites</td>
<td>110 S m⁻¹</td>
<td>3</td>
<td><140</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>CNT/Cotton Com-posite fabric</td>
<td>50.75Ω sq⁻¹</td>
<td>8</td>
<td>135.3</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Graphene/PU fabric</td>
<td>-</td>
<td>12</td>
<td>162.6</td>
<td><20</td>
<td>13</td>
</tr>
<tr>
<td>MXene-decorated textiles</td>
<td>117 S m⁻¹</td>
<td>3.5</td>
<td>174</td>
<td><20</td>
<td>14</td>
</tr>
<tr>
<td>EMI shielding materials</td>
<td>content</td>
<td>t(mm)</td>
<td>SE (dB)</td>
<td>SSE/t (dB cm² g⁻¹)</td>
<td>Ref.</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>-------</td>
<td>---------</td>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>CuS/GFs</td>
<td>16 wt%</td>
<td>1.5</td>
<td>61</td>
<td>6130.65</td>
<td>This work</td>
</tr>
<tr>
<td>rGO/PU</td>
<td>4.7 vol%</td>
<td>60</td>
<td>57.7</td>
<td>320</td>
<td>15</td>
</tr>
<tr>
<td>rGO-Fe3O4/PVC</td>
<td>3.4 vol%</td>
<td>1.8</td>
<td>13</td>
<td>49.5</td>
<td>16</td>
</tr>
<tr>
<td>rGO/PS</td>
<td>3.47 vol%</td>
<td>2.5</td>
<td>45.1</td>
<td>167.5</td>
<td>17</td>
</tr>
<tr>
<td>rGO/PI</td>
<td>16 wt%</td>
<td>0.08</td>
<td>21</td>
<td>937.5</td>
<td>18</td>
</tr>
<tr>
<td>Graphene/PDMS</td>
<td>0.36 vol%</td>
<td>1</td>
<td>20</td>
<td>3333</td>
<td>19</td>
</tr>
<tr>
<td>rGO/PEI</td>
<td>1.38 vol%</td>
<td>2.3</td>
<td>13</td>
<td>188</td>
<td>20</td>
</tr>
<tr>
<td>rGO/WPU</td>
<td>5 vol%</td>
<td>1</td>
<td>34</td>
<td>388</td>
<td>21</td>
</tr>
<tr>
<td>MWCNTs/Epoxy</td>
<td>1.34 vol%</td>
<td>2</td>
<td>40</td>
<td>100.5</td>
<td>22</td>
</tr>
<tr>
<td>MWCNT/ WPU</td>
<td>7.2 vol%</td>
<td>4.5</td>
<td>50</td>
<td>881.8</td>
<td>23</td>
</tr>
<tr>
<td>CNT/PS</td>
<td>3.6 vol%</td>
<td>0.12</td>
<td>18.5</td>
<td>275</td>
<td>24</td>
</tr>
<tr>
<td>Ag nanowires/PI</td>
<td>/</td>
<td>0.5</td>
<td>35</td>
<td>2416</td>
<td>25</td>
</tr>
<tr>
<td>MXene/PVA</td>
<td>2.5 vol%</td>
<td>0.3</td>
<td>21</td>
<td>3867</td>
<td>26</td>
</tr>
<tr>
<td>MXene/CNF</td>
<td>90 wt%</td>
<td>0.047</td>
<td>24</td>
<td>2647</td>
<td>27</td>
</tr>
</tbody>
</table>
References:

