Supporting information

Bifunctional Flexible Fabrics with Excellent Joule Heating and Electromagnetic Interference Shielding Performance Based on Copper Sulfide/Glass Fiber Composite

Binguo Liu^{a &}, Qi Zhang^{b &}, Yuanhui, Huang^a, Dong Liu^b, Wei Pan^{a c*}, Yunchao Mu^a,

Xiaozhe Cheng^a, Yajie Qin^c

a School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China.

b School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

c Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 451191, China.

& Binguo Liu and Qi Zhang contributed equally to this work.

Corresponding Authors:

Wei Pan, Email: doctorpan0152@163.com

Yunchao Mu: Email: yunchaomu@126.com

Figure S1. XRD patterns of the CuS/GFs-1 wt%, CuS/GFs-2 wt% and CuS/GFs-4 wt%, respectively.

Figure S2. SEM image and elemental mappings of of the CuS/GFs-1 wt% (a and b), CuS/GFs-2 wt% (c and d) and CuS /GFs-4 wt% (e and f), respectively.

Figure S3. Mass loading for the CuS and electrical resistivity of CuS/GFs obtained at various concentrations. (b) I-V curve of as-prepared each CuS/GFs. (c) Electrical resistivity of CuS/GFs- 3 wt% before and after 0.5 h ultrasonic process.

Figure. S4 (a) Joule heating performance of CuS/GFs at the constant supplied voltage of 1.2 V. (b) Corresponding IR camera images of each sample. (c) Experimental data and linear fitting of saturation temperature versus U² of as-prepared each nanocomposite. (d) the XRD of CuS/GFs after running under 1.5V working voltage. (e) electrical conductivity of CuS/GFs after a long-term stability test. (f) The optical photo of CuS/GFs-3 wt% textile can withstand a weight of 2000 g.

Figure S5. EMI SE performance of CuS/GFs textiles obtained at various concentrations.

Figure S6. (a and b) SEM images, EDX spectrum and element analysis (c) of CuS/GFs-3 wt% textile after long term stability measurement. (d) XRD pattern of CuS/GFs-3 wt% textile before and after long-term stability test. (e) Joule heating performance of CuS/GFs-3 wt% at the constant supplied voltage of 1.2 V before and after 0.5 h ultrasonic process. (f) Corresponding IR camera images before-after

ultrasonic process.

Figure S7. (a) SEM images and electrical resistivity of CuS/GFs-3 wt% textile before-after ultrasonically cleaned. (b) Electrical resistivity of CuS/GFs- 3 wt% textile before and after 0.5 h ultrasonic process. (c) and (d) IR camera images and EMI SE performance of CuS/GFs- 3 wt% textile before and after 0.5 h ultrasonic process.

Heaters	Electrical property	Voltage (V)	Temperature (°C)	Response time (s)	Ref.
CuS/GFs	2.9 Ω cm ⁻¹	1.5	209	10	This work
CNT/cellulose aerogel	$0.3 \ \Omega \ sq^{-1}$	1.8	70.2	80	1
AgNWs-TPU	$0.02\Omega/mm$	24	111.8	40	2
CNT cotton fabrics	2.5ΚΩ	40	96	40	3
GFs graphene films,	6×105S m ⁻¹	5	424	2	4
Cu/RGO-PBO fibers	$0.16\Omega \text{ cm}^{-1}$	6	133	20	5
rGO/PET fabric	4.9 Ω·cm	6	138.64	3	6
Graphene Filters	-	3	80	240	7
graphene quartzfiber	0.2–10 kΩ/sq	24	980	10	8
G/WPU composites	700-500 S m ⁻¹ .	10	75.4	30	9
polypyrrole/knitted cotton fabric	55.9Ω	8	51	-	10
CNT fiber fabrics	110 S m ⁻¹	3	<140	10	11
CNT/Cotton Com-posite fabric	$50.75\Omega \text{ sq}^{-1}$	8	135.3	30	12
Graphene/PU fabric	-	12	162.6	<20	13
MXene-decorated textiles	117 S m ⁻¹	3.5	174	<20	14

Table.S1 Performance comparison between CuS/GFs and other flexible heaters

EMI shielding materials	content	t(mm)	SE (dB)	SSE/t (dB cm2 g-1)	Ref.
CuS/GFs	16 wt%	1.5	61	6130.65	This work
rGO/PU	4.7 vol%	60	57.7	320	15
rGO-Fe3O4/PVC	3.4 vol%	1.8	13	49.5	16
rGO/PS	3.47 vol%	2.5	45.1	167.5	17
rGO/PI	16 wt%	0.08	21	937.5	18
Graphene/PDMS	0.36 vol%	1	20	3333	19
rGO/PEI	1.38 vol%	2.3	13	188	20
rGO/WPU	5 vol%	1	34	388	21
MWCNTs/Epoxy	1.34 vol%	2	40	100.5	22
MWCNT/ WPU	7.2 vol%	4.5	50	881.8	23
CNT/PS	3.6 vol%	0.12	18.5	275	24
Ag nanowires/PI	/	0.5	35	2416	25
MXene/PVA	2.5 vol%	0.3	21	3867	26
MXene/CNF	90 wt%	0.047	24	2647	27

Table S2. Performance comparison of CuS/GFs textile nanocomposite papers with previous reported EMI shielding materials

References:

- 1 Z. G. Guo, C. Sun, J. Wang, Z. S. Cai and F. Y. Ge, ACS Appl Mater Interfaces, 2021, 13, 8851-8862.
- J. Zhong, Z. Zhou, J. Zhang, J. Tang, P. Wu and Y. Wang, *J Mater Sci-Mater El*, 2020, **31**, 15038-15047.
- 3 P. Ilanchezhiyan, A. S. Zakirov, G. M. Kumar, S. U. Yuldashev, H. D. Cho, T. W. Kang and A. T. Mamadalimov, *RSC Adv*, 2015, 5, 10697-10702.
- 4 R. Wang, Z. Xu, J. H. Zhuang, Z. Liu, L. Peng, Z. Li, Y. J. Liu, W. W. Gao and C.
 Gao, *Adv Electron Mater*, 2017, 3, 1600425.
- 5 X. X. Lai, R. H. Guo, H. Y. Xiao, J. W. Lan, S. X. Jiang, C. Cui and W. F. Qin, J Alloy Compd, 2019, 788, 1169-1176.
- 6 D. Wang, D. W. Li, M. Zhao, Y. Xu and Q. F. Wei, *Appl Surf Sci*, 2018, 454, 218-226.
- G. Cui, Y. Cheng, C. Liu, K. W. Huang, J. L. Li, P. X. Wang, X. J. Duan, K. Chen,
 K. H. Liu and Z. F. Liu, ACS Nano, 2020, 14, 5938-5945.
- X. L. Shan, H. Zhang, C. H. Liu, L. Y. Yu, Y. S. Di, X. W. Zhang, L. F. Dong and
 Z. X. Gan, ACS Appl Mater Interfaces, 2020, 12, 56579-56586.
- Y. N. Hao, M. W. Tian, H. T. Zhao, L. J. Qu, S. F. Zhu, X. S. Zhang, S. J. Chen, K.
 Wang and J. H. Ran, *Ind Eng Chem Res*, 2018, 57, 13437-13448.
- B. Wang, H. N. Cheng, J. R. Zhu, Y. Yuan and C. X. Wang, *Org Electron*, 2020, 85, 105819.
- X. G. Luo, W. Weng, Y. X. Liang, Z. X. Hu, Y. Zhang, J. J. Yang, L. J. Yang, S. Y.
 Yang, M. F. Zhu and H. M. Cheng, *J Mater Chem A*, 2019, 7, 8790-8797.

- M. S. Sadi, M. Y. Yang, L. Luo, D. S. Cheng, G. M. Cai and X. Wang, *Cellulose*, 2019, 26, 6179-6188.
- 13 M. W. Tian, Y. N. Hao, L. J. Qu, S. F. Zhu, X. S. Zhang and S. J. Chen, Mater Lett, 2019, 234, 101-104.
- 14 X. Y. Liu, X. X. Jin, L. Li, J. F. Wang, Y. Y. Yang, Y. X. Cao and W. J. Wang, J Mater Chem A, 2020, 8, 12526-12537.
- B. Shen, Y. Li, W. T. Zhai and W. G. Zheng, ACS Appl Mater Interfaces, 2016, 8, 8050-8057.
- K. Yao, J. Gong, N. N. Tian, Y. C. Lin, X. Wen, Z. W. Jiang, H. Na and T. Tang,
 RSC Adv, 2015, 5, 31910-31919.
- 17 D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang and Z. M. Li, Adv Funct Mater, 2015, 25, 559-566.
- Y. Li, X. L. Pei, B. Shen, W. T. Zhai, L. H. Zhang and W. G. Zheng, *RSC Adv*, 2015, 5, 24342-24351.
- 19 Z. Chen, C. Xu, C. Ma, W. Ren and H. M. Cheng, Adv Mater, 2013, 25, 1296-1300.
- 20 S. T. Hsiao, C. C. Ma, W. H. Liao, Y. S. Wang, S. M. Li, Y. C. Huang, R. B. Yang and W. F. Liang, ACS Appl Mater Interfaces, 2014, 6, 10667-10678.
- 21 J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang and W. Zheng, ACS Appl Mater Interfaces, 2013, 5, 2677-2684.
- 22 Y. Chen, H. B. Zhang, Y. B. Yang, M. Wang, A. Y. Cao and Z. Z. Yu, *Adv Funct Mater*, 2016, 26, 447-455.

- 23 Z. H. Zeng, H. Jin, M. J. Chen, W. W. Li, L. C. Zhou and Z. Zhang, Adv Funct Mater, 2016, 26, 303-310.
- 24 Y. Yang, M. C. Gupta, K. L. Dudley and R. W. Lawrence, *Nano Lett*, 2005, 5, 2131-2134.
- 25 J. J. Ma, K. Wang and M. S. Zhan, *RSC Adv*, 2015, **5**, 65283-65296.
- 26 H. L. Xu, X. W. Yin, X. L. Li, M. H. Li, S. Liang, L. T. Zhang and L. F. Cheng, ACS Appl Mater Interfaces, 2019, 11, 10198-10207.
- 27 W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma and F. Chen, ACS Nano, 2018, 12, 4583-4593.