Supporting Information

Regulating the synthesis rate and yield of bio-assembled FeS nanoparticles for

efficient cancer therapy

Zheng Dang,^a Yong Guan,^a Zhao Wu,^a Xia-Yu Tao,^a Ying Xiong,^a Hao-Bo Bai,^a

Chang-Sheng Shao,^{b,c} Gang Liu,^a Qing Huang,^{b,c} Li-Jiao Tian,^{a,*} Yang-Chao Tian,^{a,*}

^a National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China

^b CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China

^c Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China

Corresponding authors:

Correspondence to Li-Jiao Tian (<u>ljtian@ustc.edu.cn</u>) or Yang-Chao Tian (<u>ychtian@ustc.edu.cn</u>)

Fig. S1. Time-resolved Fe 2p XPS patterns of the biogenic system. Fe2 refers to 2 mM

Fe(III)-citrate. S1 refers to 1 mM thiosulfate. M refers to S. oneidensis MR-1.

Fig. S2. Images of *S. oneidensis* MR-1cells suspension collected at different incubation times under bright field. Cells were cultivated with 1mM thiosulfate and different Fe(III)-citrate contents. **A** refers to Fe2S1 group, **B** refers to M-S1 group, **C** refers to M-Fe2S1 group, **D** refers to M-Fe3S1 group, **E** refers to M-Fe4S1 group, **F** refers to M-Fe5S1 group.

Fig. S3. The characteristics of the purified FeS NPs. (A) The TEM image of Bio-FeS NPs. (B) Size distribution of the Bio-FeS NPs calculated from TEM image.(C) The DLS size distribution of the purified Bio-FeS NPs in water.

Fig. S4. Half inhibitory concentration (denoted as IC50) of Bio-FeS NPs were calculated using GraphPad Prism software (version 6.01)

Fig. S5. The functions of proteins capped on FeS NPs. (A) Protein content and cell viability of 15 μ g/mL FeS nanoparticles. (B) Cell viabilities of Hela cells after being treated with different concentrations of proteins extracted from bacteria. XRD spectrums of protease K (C) untreated and (D) treated Bio-FeS NPs.

Table S1. Evaluation of the Fenton (Fenton-like) agents therapy efficiency.

Materials	Cell line	Content (µg/mL)	Incubation time(h)	Survivals (~%)	Ref.	
		25		98		
One-Dimensional Fe2P (NRs)		50		95		
	Hela	100	24	91	1	
		200		90		
		300		85		
		1		95		
		5		91		
mesoporous		10		85		
copper/manganese	MCF-7	20	24	56	2	
silicate nanospheres		50		30		
(mCMSNs)		100		23		
		200		21		
		1		91		
MnO ₂ -coated		2		80		
mesoporous silica	U87MG	5	24	62	3	
nanoparticles		10		52		
(MS@MnO ₂ NPs)		20		38		
		25		92		
		50		79		
	A549	100	24	66		
		150		60		
Cu/CC NPs		200		51	4	
		25		75		
	4T1	50	24	71		
		100		68		
		150		56		
		200		38		
DSF@PEG/Cu- HMSNs	4T1	0.6		94		
		1.25		92	5	
		2.5	24	80		
		5		52		
		10		30		
		20		12		
Cu-HCF single-site nanozymes (SSNEs)						
		12.5		100		
	Hela	25	24	80	6	
		50		60		
		100		48		
		200		30		

		12.5		98	
Cu-HCF single-site		25		75	
nanozymes	4T1	50	24	65	6
(SSNEs)		100		53	
		200		25	
		2		99	
iron-containing metal-		4		95	
organic framework	Hela	8	24	90	7
[MOF(Fe)]		16		85	
nanocatalyst		32		78	
		64		70	
		4		98	
		8		80	
(FeS@BSA)	Huh7	12	24	32	8
nanoclusters		16		22	
		20		20	
		50		98	
		100		94	
core-shell-structured		150	24	92	
iron carbide	4T1	200		91	9
$(Fe_5C_2@Fe_3O_4)$		250		87	
nanoparticles (NPs)		300		71	
		350		63	
		400		57	
		1.75		94	
		3.5		99	
	MCF-7	7	24	92	10
		14		90	
		28		81	
FeGd-		56		75	
HN@Pt@LF/RGD2					
		1.75		66	
		3.5		50	
	U-87	7	24	41	10
		14		39	
		28		28	
		56		24	
		3		98	
		6		90	
		12		19	
Bio-FeS NPs		24		6	
	Hela	36	24	5	
		48		6	

		3		100	
		6		65	
		12		30	
Bio-FeS NPs	4T1	24	24	19	
		36		12	
		48		8	

Таріс	52 THC	cilipioyeu o			osynthesis	
Species	NPs	S-source	Fe-source	Size (nm)	Applications	Ref.
S. oneidensis MR-1	FeS	$Na_2S_2O_3$	FeCl ₃	30	microbial fuel cells (MFC)	11
S. oneidensis MR-1	FeS	$Na_2S_2O_3$	Fe-citrate	60	microbial electrochemical	12
A. cryptum JF- 5&SRB	FeS	SO4 ²⁻	FeSO ₄	-	remediation	13
Desulfovibrio vulgaris	FeS	NaSO4, MgSO4	FeSO ₄	several to tens	-	14
S. oneidensis MR-1	FeS	$Na_2S_2O_3$	naphthol green B	30	contaminant degradation	15
S. putrefaciens CN32	FeS	$Na_2S_2O_3$	Fe-citrate	100	contaminant degradation	16
Shewanella PV-4	FeS	$Na_2S_2O_3$	FeCl ₃	5-10	MFC	17
Geobacter	FeS ₂	$(NH_2)_2CS$	FeCl ₃	26-48	MFC	18
S. oneidensis MR-1	FeS	$Na_2S_2O_3$	Fe-citrate	35	biomedicine	This work

Table S2 The employed bacteria for FeS NPs biosynthesis

Reference

- Y. Liu, W. Zhen, Y. Wang, J. Liu, L. Jin, T. Zhang, S. Zhang, Y. Zhao, S. Song, C. Li, J. Zhu, Y. Yang and H. Zhang, *Angew. Chem. Int. Ed.*, 2019, 58, 2407-2412.
- C. Liu, D. Wang, S. Zhang, Y. Cheng, F. Yang, Y. Xing, T. Xu, H. Dong and X. Zhang, ACS Nano, 2019, 13, 4267-4277.
- L. S. Lin, J. B. Song, L. Song, K. M. Ke, Y. J. Liu, Z. J. Zhou, Z. Y. Shen, J. Li, Z. Yang, W. Tang, G. Niu, H. H. Yang and X. Y. Chen, *Angew. Chem. Int. Ed.*, 2018, 57, 4902-4906.
- S. Sun, Q. Chen, Z. Tang, C. Liu, Z. Li, A. Wu and H. Lin, *Angew. Chem. Int. Ed.*, 2020, **59**, 21041-21048.
- 5. W. Wu, L. Yu, Q. Jiang, M. Huo, H. Lin, L. Wang, Y. Chen and J. Shi, J. Am. Chem. Soc., 2019, 141, 11531-11539.
- D. Wang, H. Wu, C. Wang, L. Gu, H. Chen, D. Jana, L. Feng, J. Liu, X. Wang, P. Xu, Z. Guo, Q. Chen and Y. Zhao, *Angew. Chem. Int. Ed.*, 2021, 60, 3001-3007.
- 7. B. Yang, L. Ding, H. Yao, Y. Chen and J. Shi, Adv. Mater., 2020, 32.
- C. K. Xie, D. Cen, Z. H. Ren, Y. F. Wang, Y. J. Wu, X. Li, G. R. Han and X. J. Cai, *Adv. Sci.*, 2020, 7.
- J. Yu, F. Zhao, W. L. Gao, X. Yang, Y. M. Ju, L. Y. Zhao, W. S. Guo, J. Xie, X. J. Liang, X. Y. Tao, J. Li, Y. Ying, W. C. Li, J. W. Zheng, L. Qiao, S. B. Xiong, X. Z. Mou, S. L. Che and Y. L. Hou, *ACS Nano*, 2019, **13**, 10002-10014.
- Z. Y. Shen, T. Liu, Y. Li, J. Lau, Z. Yang, W. P. Fan, Z. J. Zhou, C. R. Shi, C. M. Ke, V. I. Bregadze, S. K. Mandal, Y. J. Liu, Z. H. Li, T. Xue, G. Z. Zhu, J. Munasinghe, G. Niu, A. G. Wu and X. Y. Chen, *ACS Nano*, 2018, **12**, 11355-11365.
- 11. Y. Y. Yu, Y. Z. Wang, Z. Fang, Y. T. Shi, Q. W. Cheng, Y. X. Chen, W. D. Shi and Y. C. Yong, *Nat. Commun.*, 2020, **11**.
- 12. Z. Li, P. Zhang, Y. Qiu, Z. H. Zhang, X. Wang, Y. L. Yu and Y. J. Feng, *Sci. Total Environ.*, 2021, **762**.
- 13. L. Zhou, J. Liu and F. Q. Dong, Spectrochim. Acta A Mol. Biomol., 2017, 173, 544-548.
- 14. X. Deng, N. Dohmae, A. H. Kaksonen and A. Okamoto, *Angew. Chem. Int. Ed.*, 2020, **59**, 5995-5999.
- 15. X. Xiao, W. W. Zhu, H. Yuan, W. W. Li, Q. Li and H. Q. Yu, *Biochem. Eng. J.*, 2016, **105**, 214-219.
- Y. C. Huo, W. W. Li, C. B. Chen, C. X. Li, R. Zeng, T. C. Lau and T. Y. Huang, Enzyme Microb. Technol., 2016, 95, 236-241.
- X. C. Jiang, J. S. Hu, A. M. Lieber, C. S. Jackan, J. C. Biffinger, L. A. Fitzgerald, B. R. Ringeisen and C. M. Lieber, *Nano Letters*, 2014, 14, 6737-6742.
- R. W. Wang, M. Yan, H. D. Li, L. Zhang, B. Q. Peng, J. Z. Sun, D. Liu and S. Q. Liu, *Adv. Mater.*, 2018, **30**.