Supporting information

Ionic Liquid as Precursor for Fe-N Doped Carbon Nanotubes Electrocatalysts for

the Oxygen Reduction Reaction

Azhar Mahmood^a, Bolin Zhao^a, Nanhong Xie^{b*} and Li Niu^{a*}

^a Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering,

Guangzhou University, Guangzhou 510006, P. R. China.

^b Research Center of Renewable Energy, Sinopec Research Institute of Petroleum Processing, Beijing

100083, P. R. China

*Corresponding authors:

Dr. N. Xie, E-mail: xienanhong.ripp@sinopec.com; Tel:+86-010-82368367

Prof. Dr. L. Niu, E-mail: Iniu@gzhu.edu.cn; Tel.: +86-020-39366902

Fig. S1. TEM image of pristine CNT sample.

Fig. S2. HTEM image of CNT/Fe-N-C(3%).

Fig. S3. TEM images of samples a) CNT/Fe-N-C(2%) and b) CNT/Fe-N-C(7%).

Fig. S4. X-ray photoelectron spectroscopy (XPS) analysis of pristine CNT and CNT/Fe-N-C catalysts (a) Full-scan XPS survey, (b) High resolution N 1s XPS spectra of pristine CNT and CNT/Fe-N-C with 3% Fe, respectively.

Fig. S5. Comparison of ORR catalytic performance of CNT/Fe-N-C(3%) in O_2 -saturated 0.1 M KOH electrolyte using Pt wire and graphite rod as counter electrode.

Fig. S6. ORR catalytic performance of CNT, CNT-Fe and CNT-IL in O₂-saturated 0.1 M KOH electrolyte.

Fig. S7. Cyclic Voltammetry measurements of electroactive surface area (EASA) of the of CNT/Fe-N-C(3%) and CNT/Fe-N-C(7%) catalysts in N_2 -saturated 0.5 M H_2SO_4 electrolyte.

Fig. S8. A representative EDX spectrums of catalysts a) CNT/Fe-N-C(3%), b) CNT/Fe-N-C(7%).

Fig. S9. Comparison of ORR polarization curves obtained at catalyst loadings of 0.2 and 0.6 mg cm⁻² in O_2 saturated 0.1 M KOH at 1600 rpm.

Fig. S10. Fourier transform of the Fe K-edge EXAFS spectra of CNT/Fe-N-C(3%) catalyst.

Table S1. The composition of Fe content in different CNT/Fe-N-C catalysts determined by ICP-AES before and after the ORR.

Sample	ICP Fe (wt%)		
	Before	After	
CNT/Fe-N-C(3%)	3.01%	2.92%	
CNT/Fe-N-C(7%)	6.95%	6.87%	

Sample	<i>E</i> ₀ (V)	E _{1/2} (V)	Loading (mg cm ⁻²)	Source
CNT	0.88	0.74	0.60	This study
CNT/Fe	0.96	0.83	0.60	This study
CNT/IL	0.94	0.80	0.60	This study
CNT/Fe-N-C(3%)	1.00	0.88	0.60	This study
CNT/Fe-N-C(7%)	0.99	0.86	0.60	This study
Pt/C (20wt% Pt)	0.99	0.83	0.10	This study
P12-900	1.01	0.86	0.50	Ref. 1
NOSC8-900	0.96	0.74	0.20	Ref. 2
FeNCNH-900	1.00	0.87	0.50	Ref. 3
Fe-N/C-800	0.92	0.81	0.10	Ref. 4
C-Fe(OH)₃@ZIF-1000	0.99	0.88	0.60	Ref. 5
FeN _x -PNC	1.00	0.86	0.14	Ref. 6
Fe/SNC	0.97	0.85	0.60	Ref. 7

Table S2. Comparison of the E_{onset} and $E_{1/2}$ toward ORR for non-noble metal catalysts in 0.1 M KOH reported in this work and some representative literature.

References

- 1. Bhange, S. N.; Unni, S. M.; Kurungot, S., ACS Appl. Energy Mater. 2018, 1, 368–376.
- 2. Meng, Y.; Voiry, D.; Goswami, A.; Zou, X.; Huang, X.; Chhowalla, M.; Liu, Z.; Asefa, J. Am. Chem. Soc. 2014, 136, 13554-13557.
- 3. Unni, S. M.; Ramadas, S.; Illathvalappil, R.; Bhange, S. N.; Kurungot, S. J. Mater. Chem. A 2015, 3, 4361-4367.
- 4. Lin, L.; Zhu, Q.; Xu, A.-W., J. Am. Chem. Soc. 2014, 136, 11027-11033.
- 5. Huang, J.-W.; Cheng, Q.-Q.; Huang, Y.-C.; Yao, H.-C.; Zhu, H.-B.; Yan, H., ACS Appl. Energy Mater. 2019, 2, 3194–3203.
- 6. Ma, L.; Chen, S.; Pei, Z.; Huang, Y.; Liang, G.; Mo, F.; Yang, Q.; Su, J.; Gao, Y.; Zapien, J. A.; Zhi, C. *ACS Nano* **2018**, *12*, 1949-1958.
- 7. Chen, P.; Zhou, T.; Xing, L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L.; Yan, W.; Chu, W.; Wu, C.; Xie, Y. *Angew. Chem. Int. Ed.* **2017**, *56*, 610-614.