Supporting information

The Nonlinear Optical Transition Bleaching in

Tellurene

Yiduo Wang¹, Yingwei Wang¹^{*}, Yulan Dong²^{*}, Li Zhou, Hao Wei, Mengqiu Long, Si Xiao¹, Jun He¹^{*}

¹Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China. ²Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation, School of Mathematics and Statistics, Hunan University of Technology and Business, Changsha, Hunan 410205, China. Corresponding author: <u>*wyw1988@csu.edu.cn</u>; <u>*yldong@csu.edu.cn</u>; <u>*junhe@csu.edu.cn</u>;

CONTENTS

Note S1. OA Z-scan results of tellurene with different wavelength

Note S2. Calculation of carrier intensity

Note S3. Density of states of tellurene

Note S1. OA Z-scan results of tellurene with different wavelength

Figure S1. OA Z-scan results of tellurene with the wavelength of (a) 500nm, (b) 550nm, (c) 600nm, (d) 650nm, (e) 700nm, (f) 750nm, (g) 800nm and (h) 1300nm.

Note S2. Calculation of carrier intensity

To calculate the carrier intensity excited by pump beam, the laser pulse energy E, linear absorption coefficient α , photon energy $h\nu$ and excitation volume V should be included:

$$n = \frac{E\alpha}{h\nu V}$$

where $V = \frac{\pi D^2}{4}L$ is the volume of cylinder, L = 0.1cm is the thickness of sample, D is the

spot diameter of focused pump beam which is calculated with the focusing formula of Gaussian beam:

$$\mathbf{D} = \frac{4\lambda f}{\pi d}$$

where f = 25cm is the focal length of lens, d = 2mm is spot diameter in front of lens. Combined with the above derivation, the carrier intensity can be calculated.

Note S3. Density of states of tellurene

Figure S2. Sum and partial density of states of tellurene.