Supporting Information

Flexible free-standing Ni-Mn oxides antennas decorated CNTs/nanofibers membrane for high- volumetric capacitance supercapacitors

Niranjala Fernando[†], Amutha Chinnappan[‡], Atif. Aziz^{§,*}, Amor Abdelkader^{†,*}, Seeram Ramakrishna[‡], and Mark E. Welland[§]

† Faculty of Science and Technology, Bournemouth University, Poole House, Talbot Campus, Poole, Dorset BH12 5BB

‡ Department of Mechanical Engineering, National University of Singapore, Singapore

117575, Singapore

§ Nanoscience Centre, Department of Engineering, University of Cambridge, CB3 0FF, UK.

* E-mail: aabdelkader@bournemouth.ac.uk

Element	(KeV)	Mass %	Sigma	Atom %
C K	0.277	73.51	0.18	88.41
0 K	0.525	9.13	0.17	8.24
Mn K	5.894	6.15	0.12	1.62
Ni K*	7.471	5.26	0.15	1.29
$Pt K^*$	2.048	5.95	0.12	0.44
Total		100		100

Figure S1: SEM/EDX analysis of Ni- Mn oxides /CNT@CNF

Figure S2: SEM images of the as prepared free-standing Ni-Mn oxides /CNT@CNF electrode.

Figure S3: TEM image of the nanofibers showing the tubular structure is composed of interconnected nanoparticles.

Figure S4: TEM image of a part of the nanofiber showing the growth of Ni-Mn oxides antennas out of the fibres surface.

Figure S5: Gravimetric electrochemical performance Ni-Mn oxides/CNT@CNF super capacitor device (a) cyclic voltammograms at various scan rates of from 10 to 500 mV s⁻¹ b) specific gravimetric capacitance at different current densities c) energy and power densities and d) cycling test at a current density of 3.74 A g^{-1} .