Supporting information for

Design nanoporous metal thin films via solid state interfacial dealloying

Chonghang Zhao,^a Kim Kisslinger,^b Xiaojing Huang,^c Jianming Bai,^c Xiaoyang Liu,^a Cheng-Hung Lin,^a Lin-Chieh Yu,^{d,a} Ming Lu,^b Xiao Tong,^b Hui Zhong,^e Ajith Pattammattel,^c Hanfei Yan,^c Yong Chu,^c Sanjit Ghose,^c Mingzhao Liu^b and Yu-chen Karen Chen-Wiegart^a

^a Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.

^cNational Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA

^d Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.

^e Department of Joint Photon Science Institute, Stony Brook University, Stony Brook, New York 11794, United States

*Corresponding Author E-mail: Karen.Chen-Wiegart@stonybrook.edu

Video S1. 3D XRF nano-tomography of 460C-30 sample

Video S2. 3D STEM-EDX nano-tomography of 460C-30 sample.

^b Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA

Figure S1. SEM cross-section view of $Ti_{30}Cu_{70}$ at.% films dealloyed by Mg at 460°C for 30 min, with (a) a silicon wafer as the substrate: (left) the pristine Ti-Cu film, and (right) the dealloyed Ti-Cu film, and (b) a borosilicate glass as the substrate: (left) the pristine Ti-Cu film, and (right) the dealloyed Ti-Cu film.

Figure S2. Segmented images of Ti EDX mapping of (a) 460C-30 and (b) 460C-30-E with different threshold values (I_{th}) and their corresponding ligament size distribution

Figure S3. XPS analysis on 460C-30 sample after sputtering by Ar⁺ at 1.5 keV at different times.

Figure S4. SEM cross-section view of $Ti_{30}Cu_{70}$ at.% films dealloyed by Mg at 460°C for 30 min, without the Ta barrier layer. A silicon wafer was used as a substrate: (a) the pristine Ti-Cu film, and (b) the dealloyed Ti-Cu film.

Figure S5. Overlap of Ti and Mg EDX maps from the 460C-30 sample.

Systems	Atomic radius of each element	Largest atomic radius ratio in the system	Atomic radius ratio between the soluble and the solvent element (dealloying agent)
(Ta-Ti)-Zr ¹	Ta: 1.430 Ti: 1.462 Zr: 1.603	Ti/Zr = 1.462/1.603 = 0.912	Ti/Zr = 1.462/1.603 = 0.912
(Ta-Ti)-Cu	Ta: 1.430 Ti: 1.462 Cu: 1.278	Cu/Ti = 1.278/1.462 = 0.874	Cu/Ti = 1.278/1.462 = 0.874
(Fe-Ni)-Cu ¹	Fe: 1.241 Ni: 1.246 Cu: 1.278	Cu/Fe = 1.241/1.278 = 0.971	Cu/Ni = 1.246/1.278 = 0.975
(Ti-Cu)-Mg	Ti: 1.462 Cu:1.278 Mg: 1.601	Cu/Mg = 1.278/1.601 = 0.798	Cu/Mg = 1.278/1.601 = 0.798
(Ti-Mo-Cu)-Mg ²	Ti: 1.462 Cu:1.278 Mo: 1.363 Mg: 1.601	Cu/Mg = 1.278/1.601 = 0.798	Cu/Mg = 1.278/1.601 = 0.798
(Fe-Ni)-Mg ³	Fe: 1.241 Ni: 1.246 Mg: 1.601	Fe/Mg = 1.241/1.601 = 0.775	Ni/Mg = 1.249/1.601 = 0.780
(Fe-Cr-Ni)-Mg ⁴	Fe: 1.241 Ni: 1.246 Cr: 1.249 Mg: 1.601	Fe/Mg = 1.241/1.601 = 0.775	Ni/Mg = 1.249/1.601 = 0.780

Table S1. Summary of atomic radius ratio differences in previously reported SSID systems.

References

1. McCue, I.; Demkowicz, M. J., Alloy Design Criteria for Solid Metal Dealloying of Thin Films. *Jom* **2017**, *69* (11), 2199-2205.

2. Zhang, F. M.; Wang, L. L.; Li, P.; Liu, S. L.; Zhao, P. P.; Dai, G.; He, S. Y., Preparation of Nano to Submicro-Porous TiMo Foams by Spark Plasma Sintering. *Adv. Eng. Mater.* **2017**, *19* (2).

3. Zhao, C. H.; Kisslinger, K.; Huang, X. J.; Lu, M.; Camino, F.; Lin, C. H.; Yan, H. F.; Nazaretski, E.; Chu, Y.; Ravel, B.; Liu, M. Z.; Chen-Wiegart, Y. C. K., Bi-continuous Pattern Formation in Thin Films via Solid-state Interfacial Dealloying Studied by Multimodal Characterization. *Mater. Horiz.* **2019**, *6* (10), 1991-2002.

4. Wada, T.; Yubuta, K.; Kato, H., Evolution of A Bicontinuous Nanostructure via A Solid-State Interfacial Dealloying Reaction. *Scr. Mater.* **2016**, *118*, 33-36.