Electronic Supplementary Material

Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanoparticles

Luigi Stagi¹, Davide De Forni², Luca Malfatti¹, Francesca Caboi³, Andrea Salis⁴, Barbara Poddesu², Giulia Cugia², Franco Lori², Grazia Galleri⁵, Plinio Innocenzi^{1,*}

¹Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, CR-INSTM, Università di Sassari. Via Vienna 2, 07041 Sassari, Italy.

²ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy

³Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche, Parco Scientifico e Tecnologico della Sardegna, 09010 Pula (CA), Italy

⁴Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, SS 554 bivio Sestu. 09042 Monserrato (CA), Italy

⁵Dipartimento di Science Mediche, Chirurgiche e Sperimentali, Viale S. Pietro 8, 07100 Sassari, Italy

*Corresponding author: <u>plinio@uniss.it</u>

Figure S1. ¹H NMR of L-Lysine

Figure S2. ¹H NMR of L-Lysine – H₃BO₃ as a function of the thermal polymerization temperature

Figure S3. ¹H NMR spectra of lysine (top) and hyperbranched polylysine nanopolymers (middle). Attribution of the chemical shifts (bottom) has been done following the data published in: Scholl, M., Nguyen, T. Q., Bruchmann, B., Klok, H.-A. The Thermal Polymerization of Amino Acids Revisited; Synthesis and Structural Characterization of Hyperbranched Polymers from L-Lysine. J. Polymer Sci.: Part A: Polymer Chem., 45, 5494–5508 (2007). The ¹H NMR data are consistent with the formation of a hyperbranched polylysine structure via thermal induced amidation reactions, in accordance with FTIR and DSC data.

- H₆ 2.67 ppm ϵ -CH₂ group in a α -linear and terminal structural unit
- H₅ 3.19 ppm ε -CH₂ group next to an *amide bond* (dendritic and ε -linear structural unit)
- H₄ 3.25 ppm α -CH protons of the ϵ -linear structural units
- H₃ 3.33 ppm α -CH protons of the terminal structural units
- H₂ 4.02 ppm α -CH protons of the α -linear structural units
- H_1 4.24 ppm α -CH protons of the dendritic protons

Figure S4. 2D NMR spectra ${}^{13}C$ (y axis) ${}^{1}H$ (x axis) of HPN in D₂O.

Figure S5. Formation of a hyperbranched polylysine via thermal polymerization.

Figure S6. Three-dimensional fluorescence graph [excitation (y)-emission (x)-intensity (z)] of lysine in water (left). Emission spectrum of lysine upon excitation at 350 nm (right).

Figure S7. X-ray diffraction analysis of the HPN sample. The diffraction pattern supports the amorphous nature of the HPNs.

Remdesivir		HPNs		Lysine-only nanopolymers	
Concentration (μg mL ⁻¹)	Antiviral activity (% viral NC protein, compared to untreated control)	Concentration (µg mL ⁻¹)	Antiviral activity (% viral NC protein, compared to untreated control)	Concentration (µg mL ⁻¹)	Antiviral activity (% viral NC protein, compared to untreated control)
6	14 ± 7	500	14 ± 7	125	114 ± 20
1.2	73 ± 9	50	79 ± 41	12.5	100 ± 0
0.24	96 ± 10	5	95 ± 19	1.25	100 ± 0
0.05	107 ± 23	0.5	94 ± 9	0.125	100 ± 0

Table S1. Antiviral activity data of test compounds at the different concentrations, i.e.,% viral nucleocapsid protein, NC, compared to untreated infected control (= 100%).

Lysine-only nanomaterial was not effective in reducing SARS-CoV-2 viral replication,

with a 50% inhibitory concentration (IC₅₀) value higher than 125 μ g mL⁻¹.

Figure S9. Dot plots for control cells (a) and cells pulsed with 250 μ g mL⁻¹ of HPNs for 24 hours (b); dot plots for control cells (c) and cells pulsed with 250 μ g mL⁻¹ of HPNs for 24 hours (d) after treatment with trypan blue 0.025%, showing only partial quenching of extracellular fluorescence and confirming internalization of HPNs.