Supporting information

Vanadium based oxide-nitride heterostructure as a multifunctional

sulfur host for advanced Li-S batteries

Menglong Zhao,^{#a} Yang Lu,^{*#a} Ya Yang,^a Mengjie Zhang,^a Zhenjie Yue,^a Ning Zhang,^a Tao Peng,^a Xianming Liu,^b and Yongsong Luo^{*ac}

^aHenan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.

^bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China. ^cCollege of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.

^{*}Corresponding author. Tel./fax: +86 376 6390801, E-mail: <u>luyang.181@163.com</u> (Y. Lu), <u>ysluo@xynu.edu.cn</u> (Y. S. Luo).

[#]Yang Lu and Menglong Zhao contributed equally to this work.

Figure S1. (a) SEM image of $V_2O_3@C$; (b) SEM image of VN@NC.

Figure S2. (a) SEM image of V_2O_3 -VN without the outer glucose layer; (b) TEM image of the V_2O_3 -VN@NC with the carbon layer.

Figure S3. (a) XPS survey spectrum of V₂O₃-VN@NC; (b) Raman spectral of V₂O₃-VN@NC.

Figure S4. TG curves of the V₂O₃-VN@NC/S (a), V₂O₃@C/S (b) and VN@NC/S (c) composites; and corresponding XRD pattern of V₂O₃-VN@NC/S (d), V₂O₃@C/S (e) and VN@NC/S (f) composites.

Figure S5. EIS curves of V₂O₃@C/S, VN@NC/S and V₂O₃-VN@NC/S electrodes after cycling.

Figure S6. SEM image of V₂O₃-VN@NC/S electrodes after 800 cycles at 1C.

Figure S7. Comparison of decay rate per cycle for Li-S batteries between this work and other reported studies.

Supplementary References

- Y. N. Fan, F. Ma, J. S. Liang, X. Chen, Z. P. Miao, S. Duan, L. Wang, T. Y. Wang, J. T. Han, R. G. Cao, S. H. Jiao and Q. Li, *Nanoscale*, 2020, **12**, 584-590.
- 2. S. D. Seo, D. Park, S. Park and D. W. Kim, Adv. Funct. Mater., 2019, 29, 1903712.
- 3. L. Y. Hu, C. L. Dai, H. Liu, Y. Li, B. L. Shen, Y. M. Chen, S. J. Bao and M. W. Xu, Adv. Energy Mater., 2018, 8, 1800709.
- 4. X. X. Li, K. Ding, B. Gao, Q. W. Li, Y. Y. Li, J. J. Fu, X. M. Zhang, P. K. Chu and K. F. Huo, *Nano Energy*, 2017, 40, 655-662.
- 5. C. Ye, Y. Jiao, H. Y. Jin, A. D. Slattery, K. Davey, H. H. Wang and S. Z. Qiao, *Angew. Chem. Int. Ed.*, 2018, **57**, 16703-16707.
- 6. Z. G. Wang, K. Yu, S. J. Gong, E. Du and Z. Q. Zhu, Nanoscale, 2020, 12, 18950-18964.
- S. N. Gu, Z. W. Bai, S. Majumder, B. L. Huang and G. H. Chen, *Nanoscale*, 2019, 11, 20579-20588.
- L. B. Ma, H. N. Lin, W. J. Zhang, P. Y. Zhao, G. Y. Zhu, Y. Hu, R. P. Chen, Z. X. Tie, J. Liu, Z. Jin, *Nano Lett.*, 2018, 18, 7949-7954.

CV Peak	V ₂ O ₃ @C	VN@NC	V ₂ O ₃ -VN@NC
Peak i	3.668×10 ⁻⁹ cm ² /s	1.702×10 ⁻⁸ cm ² /s	$1.924 \times 10^{-8} \mathrm{cm}^{2}/\mathrm{s}$
Peak ii	5.672×10 ⁻⁹ cm ² /s	1.391×10 ⁻⁸ cm ² /s	$1.706 \times 10^{-8} \mathrm{cm}^{2}/\mathrm{s}$
Peak iii	1.232×10 ⁻⁸ cm ² /s	8.633×10 ⁻⁸ cm ² /s	9.823×10 ⁻⁸ cm ² /s

 $\label{eq:linear} \underbrace{ \textbf{Table S1. Summary of } D_{li}{}^{+} \text{at peaks i, ii, iii for } V_2O_3@C, VN@NC \text{ and } V_2O_3{}^{-}VN@NC \text{ cells.} } \\$