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1. How to generate 3,119 2D hexagonal binary compounds (MX and 

MX2)

Site Elements

M, X Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Y, Zr, Nb, 

Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, Hf, Ta, W, Re, Os, 

Ir, Pt, Au, Hg, Tl, Pb, Bi, Al, Si, P, B, C, N

Site Elements

M, X Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Y, Zr, Nb, 

Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, Hf, Ta, W, Re, Os, 

Ir, Pt, Au, Hg, Tl, Pb, Bi, Al, Si, P, B, C, N, Be, Ma, Ca, Sr, Ba

Different 2D MX and MX2 materials are generated by replacing M and X atoms by 

45 and 50 elements (Table S1 and S2) across the periodic table, respectively. Note that 

MX2 and XM2 structures are stoichiometrically inequivalent, and MX and XM 

structures are stoichiometrically equivalent. There are total 2450 MX2 and 990 MX 

structures. In addition, when MX structures contain alkaline earth metals, the vertical 

displacement between M and X atoms (d) is about 3.30 Å, such as 3.30 Å for BaSr and 

3.25 Å for LaBa (see Fig. S1). Such displacements are far longer than those of stable 

MX structures (see d in Table S8), thus those structures containing alkaline earth metals 

could be unstable and we preclude alkaline earth metals in MX. Before executing the 

machine learning training, the data cleaning method is performed to ensure the 

consistency of data by removing the abnormal and unnecessary data. We performed full 

relaxed geometric structure optimizations and discovered that two X atoms of 315 

structures in 2450 MX2 are not sitting on the same plane (see Fig. S1), and they could 

not form a hexagonal lattice. The remaining 2135 MX2 structures are considered to 

Table S1. 45 elements for M and X sites of MX

Table S2. 50 elements for M and X sites of MX2
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guarantee the consistency of data. We also found that the optimization of geometric 

structures of 6 MX structures cannot be finished because their self-consistent 

calculations of electrons do not converge, leaving us 984 MX structures. To the end, 

the total 3,119 2D hexagonal binary compounds (HBCs) are considered as the total data 

set.

Figure S1. Geometric structures (top and side view) of 

(a) BTc2, (b) MoW2, (c) BaSr and (d) LaBa.



S5

2. The first-principles calculations and relevant physical properties

The first-principles calculations are performed based on the density functional theory 

(DFT) implemented in the Vienna Ab initio Simulation Package (VASP) 1, 2 within 

projected augmented wave (PAW) method.3,4 Perdew-Burke-Ernzerhof generalized 

gradient approximation (PBE-GGA) 5 for exchange-correlation potential was adopted. 

A cutoff of 450 eV was chosen, and the Brillouin zone was sampled using Γ-centered 

Monkhorst–Pack k-point grids of 12×12×1. Optimized atomic structures were achieved 

when the force on all atoms and the energy were converged to 0.01 eV/Å and 10-6 eV, 

respectively. All electronic structures are calculated using the PBE-GGA + U method. 

We apply Hubbard U corrections to account for Coulomb correlated potential in 3d, 4d 

and 5d transition metals, which were chosen as U = 4 eV, 2.5 eV and 0.5 eV, 

respectively.6, 7 In addition, the electronic structures of 24 stable ferroelectric materials 

were calculated by the hybrid functional of Hyed-Scuseria-Ernzerhof (HSE).8 The 

phonon calculations were calculated using the finite displacement method with a 

6×6×1 supercell.9, 10 The phase transition between ferroelectric and paraelectric 

phases was investigated by calculating the minimum energy pathway for polarization 

switching using the climbing image nudged elastic band (CI-NEB) method.11 We 

performed ab initio molecular dynamics (AIMD) simulations at 300 K by using 

canonical ensemble (NVT) with Nosé-Hoover thermostat.12, 13 The total simulation 

time is 12 ps with a time step of 3 fs. Here, the heat of formation (Ef) is calculated by 

the expression , where E(MX), E(M) and E(X) represent the 
𝐸𝑓 =

𝐸(𝑀𝑋) ‒ 𝐸(𝑀) ‒ 𝐸(𝑋)
2

energy of MX per unit cell, the average energy (per atom) of simple substance M and 

simple substance X, respectively.

The total out-of-plane polarization has the form of , where  and  𝑃 = 𝑃ion + 𝑃el 𝑃ion 𝑃el

represents the out-of-plane ion polarization and out-of-plane electron polarization, 

respectively. We used the point charge model to calculate the out-of-plane ion 

polarization. The equation was frequently adopted to obtain the out-of-plane electron 

polarization in previous works 14, 15 in the form of , where  is the 𝑃el = �∭z𝜌(𝑟⃗)d𝑟⃗ 𝜌(𝑟⃗)

electron density and z is the spatial position along the z direction. The conversion 
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equations for different types of units of polarization have the following three forms 

, where , , and P(e/cm2) are the 𝑃(pC/m) = 𝑃(𝑒Å) 𝑆, 𝑃(e/cm2) = 𝑃(𝑒Å) 𝑉 𝑃(𝑒Å) 𝑃(pC/m)

polarization with units of eÅ/unit cell, pC/m, and e/cm2, respectively, S and V are the 

area and volume of the unit cell of specific materials, respectively. Our results show 

that the out-of-plane polarization of WTe2 bilayer is 2.35×1011 e/cm2, which is nearly 

consistent with the value of 2×1011 e/cm2 experimentally measured at 20K.16

We calculated the carrier mobility (µ) using the deformation potential theory.17 The 

carrier mobility (µ) of 2D materials can be calculated by , here, ,  
𝜇2𝐷 =

𝑒ℏ3𝐶2𝐷

𝑘𝐵𝑇𝑚 ∗ 𝑚𝑑𝐸𝑖
2

ℏ 𝑘𝐵

and  represent the reduced Planck constant, Boltzmann constant and temperature (here 𝑇

300 K in this work), respectively. The elastic modulus ( ) is given by 𝐶2𝐷

, where  represents the total energy of the supercell and  
𝐶2𝐷 =

1
𝑆0

∂2𝐸

∂(𝑙 𝑙0)2
|𝑙 = 𝑙0 𝐸 𝑆0

represents the area of the optimized supercell,  represents the carrier 
𝑚 ∗ = ℏ2(

∂2𝐸

∂𝑘2
) ‒ 1

effective mass along x and y directions, and  represents the reduced 𝑚𝑑 = 𝑚 ∗
𝑥𝑚 ∗

𝑦

effective mass of carriers.  is the deformation potential constant of the conducting 𝐸𝑖

band minima (CBM) (electron) and valence band maxima (VBM) (hole) along the 

transport direction, obtained by , where  represents the energy change 𝐸𝑖 = Δ𝐸 (Δ𝑙 𝑙0) Δ𝐸

of the CBM or VBM under a proper cell compression and dilatation,  and  represents 𝑙0 Δ𝑙

the lattice constant along the transport direction and the length of deformation on  (𝑙0

 is set to be 0.1% in this work), respectively.Δ𝑙 𝑙0

The quasiparticle (QP) energies were calculated via the perturbative solution to the 

Dyson equation based on the GW approximation 18, 19 in the form of 

, where  represents the mass of electron,  
[ ‒

ℏ2

2𝑚𝑒
∇2 + 𝑉𝑖𝑜𝑛 + 𝑉𝐻 + ∑𝐸𝑄𝑃

𝑛𝑘]𝜓𝑄𝑃
𝑛𝑘 = 𝐸𝑄𝑃

𝑛𝑘𝜓𝑄𝑃
𝑛𝑘 𝑚𝑒 ℏ

represents the reduced Planck constant,  represents the electrostatic potential 𝑉𝑖𝑜𝑛

contributed by ions,  represents the Hartree potential, and  represents the quasi-𝑉𝐻 𝐸𝑄𝑃
𝑛𝑘

particle energy. The optical excitation energies and exciton wave functions are 
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calculated by the Bethe-Salpeter equation (BSE), 20-22

, where and  represent the 
(𝐸𝑄𝑃

𝑐𝑘 ‒ 𝐸𝑄𝑃
𝑣𝑘)𝐴 𝑆

𝑣𝑐𝑘 + ∑
𝑣'𝑐'𝑘'

⟨𝑣𝑐𝑘│𝐾𝑒ℎ│𝑣'𝑐'𝑘'⟩𝐴 𝑆
𝑣'𝑐'𝑘' = Ω𝑆𝐴 𝑆

𝑣𝑐𝑘
𝐸𝑄𝑃

𝑐𝑘 𝐸𝑄𝑃
𝑣𝑘

quasi-particle energies for conduction and valence bands, respectively, and  𝐾𝑒ℎ Ω𝑆

represent the electron-hole interaction kernel and excitation energy, respectively. The 

imaginary part is calculated through the excitation energies and exciton wave functions, 

22 given by ), where  and  represent the polarization 
𝜀(𝜔) =

16𝜋𝑒2

𝜔2 ∑
𝑆

|𝜆⃗⟨0│𝑣⃗│𝑆⟩|2𝛿(𝜔 ‒ Ω𝑆

𝜆⃗ 𝑣⃗

vector of the incident light and velocity operator, respectively, and  represent ⟨0│𝑣⃗│𝑆⟩

the transition matrix element. The absorption coefficient  can be obtained by the α(ω)

following equation,23 , where  and  𝛼(𝜔) = 2𝜔[ 𝜀2
1(𝜔) + 𝜀2

2(𝜔) ‒ 𝜀1(𝜔)]1 2 𝜀1(𝜔) 𝜀2(𝜔)

represent the real and imaginary parts of the dielectric function, respectively. The 

kinetic energy cutoff for GW and BSE is taken as 300 eV, and we use 10 occupied and 

10 unoccupied orbitals to determine the electron-hole interaction kernel.
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3. Definition of 22 initial features

Features Definition

𝑀𝐷𝐸𝐷𝑀 Manhattan distance of eigenvalue of the distance matrix, named as 

, where  and  are the i-th and j-th 
𝑀𝐷𝐸𝐷𝑀 =

1
2∑

𝑖,𝑗
|𝜆𝑖 ‒ 𝜆𝑗| 𝜆𝑖 𝜆𝑗

eigenvalues of the distance matrix, respectively.

𝑑 The distance between M and X atoms along the plane normal

, 𝑟𝑀 𝑟𝑋 Ion radii of M and X-site atoms

, 𝐼𝐸𝑀 𝐼𝐸𝑋 Ionization energy of M and X-site atoms

, 𝑃𝑀 𝑃𝑋 Ionic polarizability of M and X-site atoms

, 𝐸𝑀 𝐸𝑋 Martynov-Batsanov electronegativity of M and X-site atoms

, 𝐼𝐶𝑀 𝐼𝐶𝑋 Ionic charge of M and X-site atoms

, 𝑛𝑀 𝑛𝑋 Number of valence electrons of M and X-site atoms

, , 𝑛𝑀(𝑖𝑛) 𝑛𝑀(𝑜𝑢𝑡)

,  𝑛𝑋(𝑖𝑛) 𝑛𝑋(𝑜𝑢𝑡)

Number of valence electrons in the inner/outer shell of M and X-

site atoms

, , 𝑟𝑀(𝑖𝑛) 𝑟𝑀(𝑜𝑢𝑡)

,  𝑟𝑋(𝑖𝑛) 𝑟𝑋(𝑜𝑢𝑡)

Inner/outer valence electrons orbital radius of M and X-site atoms

Table S3. 22 Initial features with definition

Table S2. 35 Initial features with definition
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The distance matrix can be defined as D (dkl), where dkl represents the distance 

between k-th atom and l-th atom, which is an n×n square matrix, where n is the number 

of atoms in unit cell. We use the data of element-related property, such as the 

orbital radius of valence electron from the python Mendeleev package 0.4.124 and Ref. 

[25], respectively. Here, we mean the ‘outer valence electrons’ and ‘inner valence 

electrons’ by taking Fe atom as an example. For the valence electron configuration of 

Fe atom with 3d64s2, the inner and outer valence electron configuration represents 3d6 

and 4s2 electrons, respectively.

4. Ab initio Bayesian active learning details

4.1 Distributions of polarization and band gap of all 2D HBCs

As shown in Fig. S2 (a), the distributions of the polarizations and band gaps of all 

2D HBCs obtained by calculating all the candidates via DFT confirm that the counts 

significantly decrease as polarization and band gap values increase, respectively. Fig. 

S2(b) shows the extremely unbalanced distributions of band gaps for all 2D HBCs, 

where most of the 2D HBCs are metal and the nonmetallic candidates are extremely 

rare. The maximum polarization is 64.359 pC/m, corresponding with BaPt2. The band 

gap of GeBi2 is 1.490 eV, which is the closest to 1.5 eV.

Figure S2. Distributions of (a) polarization and (b) band gap obtained from 

calculations of all 2D HBCs by DFT. 

javascript:%20void(0)
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4.2 Gaussian process regression

The Gaussian process regression (GPR) 26 is adopted as the surrogate model in active 

learning, which is in the open-source scikit-learn package.27 Gaussian process (GP) is 

a collection of random variables satisfying a joint Gaussian distribution. The targeted 

functions  can be described by using the Gaussian process, which has the form 𝑓(𝑥)

 where  and are input feature vectors of two different data, 𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥,𝑥')) 𝑥 𝑥'

m(x) and  are their mean function and kernel function, respectively. GPR is a 𝑘(𝑥,𝑥')

non-parametric regression technique, which builds a distribution of functions that are 

accord with the training data set. An n-dimensional squared exponential kernel is 

adopted as the kernel function, which has the form , 

𝑘(𝑥,𝑥') = 𝑒𝑥𝑝{ ‒

𝑛

∑
𝑖 = 1

|𝑥𝑖 ‒ 𝑥'
𝑖|2

𝜎2
𝑖 }

where  and are input features vectors of two different data,  is the i-th feature of n-𝑥 𝑥' 𝑥𝑖

dimensional input feature vectors for each data, n is the dimensional of input feature 

vectors of each data, and  is a hyper-parameter obtained using the maximum 𝜎2
𝑖

likelihood estimate.
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4.3 The number of added candidates at each iteration

Number of calculated 
structures added at each 

iteration
1 5 10 15 20 25 30 35 40 45 50

Time spent for training 
GPR model (s) 47 9 9 11 7 8 8 8 10 13 10

The total number of 
calculated structures 43 40 60 75 66 72 84 84 101 116 109

Number of calculated 
structures added at each 

iteration
1 5 10 15 20 25 30 35 40 45 50

Time spent for training 
GPR model (s) 22 6 16 14 12 10 11 12 11 22 18

The total number of 
calculated structures 34 35 67 64 71 75 84 95 90 119 119

Table S4. Dependence of the optimization performance for searching structures with 

maximal polarization on the number of calculated structures added at each iteration.

Table S2. 35 Initial features with definition

Table S5. Dependence of the optimization performance for searching structures with band 

gap the closest 1.50 eV on the number of calculated structures added at each iteration.
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In the ab initio Bayesian active learning, the number of candidates added at each 

iteration is important as it influences the optimization speed. Table S4 and S5 show the 

testing runs for different choice of numbers. If the number is small, the fitting to the 

prediction model needs to be performed too often, which results in a long training time. 

If it is large, the total number of calculations needed to obtain the final optimal result 

becomes large, resulting in the huge DFT calculations. By balancing these two factors, 

we chose the number to be 5. Note that 15 independent optimization runs are performed 

for searching for the materials with maximum polarization and band gap the closest 

1.50 eV from randomly sampling 400 candidates in the total data set, respectively. Time 

spent for training GPR model and the total number of structures that need to be 

calculated for all iterations are the average of these 15 independent runs. Due to the 

small training data set, the time spent of training GPR model is much shorter than that 

of DFT calculations. However, for a larger data set, the time spent of training GPR 

model becomes very long and could not be ignored (see Fig. S7 (c)(d)).

4.4 Comparison of Optimizations via the ab initio Bayesian active learning and 

random search

Figure S3. Histogram of the number of calculated structures required to discover 

the structures with maximum electric polarization in 75 and 200 independent 

optimization runs. (a)(c) The 75 and 200 optimization runs via the ab initio 

Bayesian active learning (BAL), respectively. (b)(d) The 75 and 200 optimization 

runs via random search (RS), respectively.
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The 75 and 200 independent optimization runs are conducted with different initial 15 

structures. Distributions of how many calculations it took to find the structures with 

maximum polarization (optimal structure) in each case are shown in Fig. S3. The 

optimal structure is found within about 65 calculated structures in the most of 75 and 

200 optimization runs via the ab initio Bayesian active learning, respectively (Figs. 

S3(a) and (c)). For random search optimization, the distributions for random search are 

very random (Figs. S3(b) and (d)). Moreover, for 75 optimization runs, the average 

number of calculated structures of the above two methods is 71 and 1620, respectively, 

which are consistent with the cases of 200 optimization runs (the numbers are 69 and 

1618).

Figure S4. Histogram of the number of calculated structures required to discover the 

structures with band gap the closest 1.5 eV in 75 and 200 independent optimization 

runs. (a)(c) The 75 and 200 optimization runs via the ab initio Bayesian active 

learning (BAL), respectively. (b)(d) The 75 and 200 optimization runs via random 

search (RS), respectively.
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We performed the 75 and 200 independent optimization runs beginning with 

different initial 15 structures for finding the structures with band gap the closest 1.5 eV 

(optimal structure). The optimal structure is discovered within about 50 calculated 

structures in the most of 75 and 200 optimization runs by the ab initio Bayesian active 

learning, respectively (Figs. S4(a) and (c)). The distributions for random search are very 

random (Figs. S4(b) and (d)). The average number of calculated structures for 75 

optimization runs of the above two methods is 70 and 1612, respectively, which are 

accord with the cases of 200 optimization runs (the numbers are 70 and 1614).

4.5 Comparison of Optimizations via the ab initio Bayesian active learning and 

greedy method

Figure S5. Histogram of the number of calculated structures required to discover 

the structures with maximum polarization and band gap the closest 1.5 eV in 75 

independent optimization runs, respectively. (a)(c) The 75 optimization runs via 

the ab initio Bayesian active learning (BAL). (b)(d) The 75 optimization runs via 

the greedy method, respectively.
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We compare the ab initio Bayesian active learning with a greedy method, and latter 

selected the top five materials with highest prediction of polarization or bandgap at each 

iteration. The 75 independent optimization runs are conducted with different initial 15 

structures. For finding the structure with maximum polarization, the average number of 

calculated structures for 75 optimization runs of the above two methods is 71 and 183, 

respectively. For discovering the structure with band gap the closest 1.5 eV, the average 

values for 75 optimization runs of the above two methods is 70 and 81, respectively. It 

is dictated that the calculated candidates of the ab initio BAL are less than that of the 

greedy method. Because the greedy method tends to optimize data locally and it may 

need a lot of data to reach the global optimal value.

5. Supervised machine learning details

5.1 Gradient boosting regression (GBR)

The Gradient boosted regression (GBR) 28 is a flexible non-parametric supervised 

machine leaning algorithm in the open-source scikit-learn package.27 The algorithm 

was a highly accurate algorithms combining several custom base weakly accurate 

algorithms (e.g., the decision tree algorithm), each of which contributes to the 

performance of the final model. The principle to improve the accuracy of the results of 

final model is to minimize the loss function on the training data set by iteratively 

integrating many weakly accurate algorithms. The final highly accurate algorithm is the 

weighted sum of several weak accurate algorithms at each iteration in the following 

form

𝐹𝑀(𝑥) =
𝑀

∑
𝑚 = 1

𝛾𝑚ℎ𝑚(𝑥)

where  are the weak algorithms, x is the input features of each data,  is the ℎ𝑚(𝑥) 𝛾𝑚

weight of each weak algorithm, and M is the number of the weak algorithms.

The weight of next weak algorithms at each iteration, is calculated by minimizing 𝛾𝑚

the loss function ( ) for all data points (count N), in the form of𝑓𝐿

(S1)
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)
𝛾𝑚 = argmin

𝛾

𝑛

∑
𝑖 = 1

𝑓𝐿(𝑦𝑖,F𝑚 ‒ 1(𝑥𝑖) + 𝛾𝑚ℎ(𝑥𝑖)

The minimization problem was solved numerically by the steepest descent. The 

steepest descent direction is the negative gradient of the loss function evaluated at the 

current mode .F𝑚 ‒ 1(𝑥𝑖)

Selecting a set of optimal hyper-parameters is necessary for improving the 

performance of the model. We selected the optimal five hyper-parameters in the GBR 

model by the grid searching method: loss function (least squares), maximum depth of 

the individual regression estimators (15), maximum leaf nodes of the individual 

regression estimators (15) and the number of learning algorithms (300).

5.2 Algorithm evaluation criteria

The coefficient of determination ( ) is adopted to evaluate the deviation between 𝑅2

the predicted values and actual values, which has the form

𝑅2 = 1 ‒

∑
𝑖

(𝑦𝑇𝑟𝑢𝑒
𝑖 ‒ 𝑦𝑃𝑟𝑒𝑑

𝑖 )2

∑
𝑖

(𝑦𝑇𝑟𝑢𝑒
𝑖 ‒ ̅𝑦𝑇𝑟𝑢𝑒

𝑖 )2

where  is the actual value,  is the predicted value, N is the number of data. R2 𝑦𝑇𝑟𝑢𝑒
𝑖 𝑦𝑃𝑟𝑒𝑑

𝑖

equals to 1, implying the ideal fitting results.

The mean absolute error (MAE) is used to evaluate the overall error between the 

predicted values and actual values, in the following form

𝑀𝐴𝐸 =
1
𝑁

𝑁

∑
𝑖

|𝑦𝑇𝑟𝑢𝑒
𝑖 ‒ 𝑦𝑃𝑟𝑒𝑑

𝑖 |

The correlation between predictive values and actual values can be described by 

Pearson coefficient (r), which has the form:

(S2)

(S3)

(S4)

file:///E:/Youdao/Dict/8.5.2.0/resultui/html/index.html%23/javascript:;
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𝑟2 =

𝑁

∑
𝑖 = 1

(𝑦True
𝑖 ‒ 𝑦True

𝑖 )(𝑦Pred
𝑖 ‒ 𝑦Pred

𝑖 )

𝑁

∑
𝑖 = 1

(𝑦True
𝑖 ‒ 𝑦True

𝑖 )2(𝑦Pred
𝑖 ‒ 𝑦Pred

𝑖 )2

The value of r is from -1 to +1. There is positive correlation between two variables 

when r is larger than zero. Otherwise, there is negative correlation between two 

variables. Moreover, the larger the absolute value of r, the stronger the correlation.

5.3 Comparison of various feature combinations

Feature combinations R2 MAE (pC/m)
MDEDM+element-related properties+d 0.871 2.620

element-related properties+d 0.802 3.086
element-related properties 0.542 5.028

Table S6. Determination coefficient (R2) and mean absolute errors (MAE) of polarization 

on the total data set for various feature combinations with the GBR algorithm

Table S2. 35 Initial features with definition

(S5)

Table S7. Determination coefficient (R2) and mean absolute errors (MAE) of band gap 

on the total data set for various feature combinations with the GBR algorithm

Table S2. 35 Initial features with definition
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Feature combinations R2 MAE (eV)
MDEDM+element-related properties+d 0.230 0.055

element-related properties+d 0.069 0.072
element-related properties -0.401 0.081

To verify that MDEDM can improve the performance of model for polarization and 

band gap, we compare three different feature vectors (features of element-related 

properties; features of element-related properties plus d; features of element-related 

properties plus d and MDEDM). The latter gives a better performance regardless of 

polarization and band gap (see Table S6 and S7), indicating that MDEDM and d can 

indeed improve the performance of model for polarization and band gap. This is 

because polarization and band gap depend on the electron density of the materials, and 

the electron density is related to the atomic positions, and the geometric descriptor d 

and MDEDM describe geometrical information about atomic positions. 

5.4 Comparison between different algorithms

Figure S6. Determination coefficient (R2) of five various supervised machine 

learning algorithms.

file:///D:/Youdao/Dict/8.5.2.0/resultui/html/index.html%23/javascript:;
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We tested five various supervised machine learning algorithms such as the gradient 

boosting regression (GBR), 28 bagging, 29 adaboost regression (ABR), 30 random forest 

regression (RFR),31 and decision tree regression.32 The results demonstrate that GBR 

model outperforms other algorithms regardless of polarization and band gap.

5.5 Comparison of the gradient boosting regression with Gaussian process 

regression algorithm
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As shown in Fig. S7(c)(d), the training time of the GPR model is significantly 

increasing with the data set size increasing, and it is several orders of magnitudes larger 

than the time needed for training GBR model on same data set. Meanwhile, the 

accuracy of GPR model is nearly consistent with that of GBR model. Thus, we adopted 

GBR model.

5.6 Feature reduction of supervised machine learning

Figure S7. The five-fold cross-validation predicted values via Gaussian process 

regression (GPR) algorithm versus DFT-calculated values for (a) polarization and 

(b) band gap. The spent time of training gradient boosting regression (GBR) model 

and Gaussian process regression (GPR) model with different size of data for (c) 

polarization and (d) band gap.
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The 22 (MDEDM and d plus 20 element-related properties) features were chosen as 

the initial feature set for the models of polarization and band gap (see Table S3). We 

utilized GBR algorithm to efficiently exclude the features that have less impact on the 

polarization until R2 and MAE achieve the high value (0.869) and the low convergence 

value (2.645), respectively, while only the 11 features construct an optimal features 

space. By utilizing GBR algorithm, we exclude the features that have less impact on 

the band gap until R2 and MAE achieve maximum value (0.236) and minimum value 

(0.053), respectively, and an optimal feature space is constructed by the 12 features.

5.7 The results of supervised machine learning model

Figure S8. Determination coefficient (R2) and mean absolute error (MAE) of GBR 

model with increasing the feature numbers. The positions of the red lines are the high 

convergence value of R2 and the low convergence value of MAE, corresponding to 

11 and 12 feature numbers for the models of polarization and band gap, respectively.

file:///D:/Youdao/Dict/8.5.2.0/resultui/html/index.html%23/javascript:;
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Here, we build a supervised machine learning model for electric polarization and 

Figure S9. The predicted results, importance and correlation of the optimal features in 

the supervised machine learning model. (a)(b) The ten-fold cross-validation predicted 

values via gradient boosting regression (GBR) algorithm versus DFT-calculated values 

for polarization and band gap. (c)(d) The features are ranked with their importance by 

GBR algorithm. (e)(f) The Pearson correlation coefficient heat map of the optimal 

feature sets for (e) polarization and (f) band gap. The coefficient of determination (R2) 

and the mean absolute error (MAE) evaluate the performance of the models. The red 

solid line and black dash line represent the actual fitting line and the ideal fitting line 

whose prediction error is zero, respectively.
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band gap. To avoid a complex supervised machine learning model, we perform a feature 

reduction by utilizing the GBR algorithm and exclude the feature of less impact (see 

Fig. S8). As a result, the two optimal feature spaces for polarization and band gap are 

composed of two different sets of features, which have 11 and 12 features, respectively 

(Table S3 and Figs. S9(c) and (d)). Figures S9(c) and (d) illustrate the importance of 

selected features obtained by GBR algorithm, d and MDEDM that play the most vital 

role in the prediction of polarization and band gap, respectively. As shown in Figs. 

S9(e) and (f), the weak correlation coefficients for most of features reveal that the 

redundant and irrelevant features are removed. When 3,119 HBC structures are all 

chosen as training data set in the supervised machine learning models of polarization 

and band gap, it can only give two accuracies with the mean absolute error (MAE) of 

2.644 pC/m and 0.053 eV for polarization and band gap, respectively (Figs. S9(a) and 

(b)).

Due to extremely unbalanced distributions of band gaps, when all 3,119 HBC 

structures are selected as the training data set, the R2 for the supervised machine 

learning model of band gap is very low (0.231) (Fig. S9(b)). Therefore, the unbalanced 

distribution of target property could result in the unreasonable accuracy of the 

supervised learning model, and it is very difficult to accurately discover materials with 

desired property.
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6. The prediction of 2D ferroelectric HBCs

6.1 All stable ferroelectric materials MX

Formula
Space 

group

Gap at 

HSE 

(eV)

Direct

Barrier 

(eV/unit 

cell)

Polarization

(eÅ/ unit 

cell)/(pC/m)

d 

(Å)

Ef 

(eV/atom)

BiSb P3m1 1.345 True 4.999 0.085 (8.80) 1.69 0.109 

SbAs P3m1 1.969 False 4.921 0.033 (4.07) 1.52 0.035 

SbP P3m1 2.281 False 4.747 0.060 (7.98) 1.44 0.153 

BiAs P3m1 1.479 True 4.719 0.126 (14.60) 1.56 0.099 

BiP P3m1 1.931 True 4.547 0.158 (19.44) 1.48 0.259 

AsP P3m1 2.430 False 4.331 0.035 (5.42) 1.32 0.066 

WC P3m1 1.716 False 3.238 0.041 (8.43) 0.94 1.707 

AsN P3m1 2.912 False 3.737 0.036 (7.65) 0.96 0.424 

PN P3m1 2.767 False 3.729 0.050 (12.50) 0.86 0.094 

SbN P3m1 2.476 False 3.246 0.058 (10.09) 1.02 0.496 

MoC P3m1 1.281 False 2.860 0.059 (12.00) 0.93 2.556 

NbN P3m1 0.791 False 1.058 0.037 (6.67) 0.79 0.928 

BiGa P3m1 0.432 True 0.339 0.026 (2.37) 0.79 0.395 

SnGe P3m1 0.566 True 0.322 0.031 (2.97) 0.77 0.625 

SbIn P3m1 1.188 True 0.211 0.096 (8.09) 0.77 0.352 

SbGa P3m1 1.439 True 0.200 0.063 (6.09) 0.70 0.276 

SnSi P3m1 0.491 True 0.196 0.047 (4.70) 0.69 0.770 

InAs P3m1 1.334 True 0.168 0.111 (10.72) 0.67 0.263 

GeSi P3m1 0.567 True 0.146 0.012 (1.40) 0.59 0.659 

GaAs P3m1 1.854 False 0.143 0.078 (8.75) 0.59 0.109 

SbAl P3m1 2.053 False 0.097 0.077 (7.33) 0.63 0.304 

BiB P3m1 1.090 True 0.083 0.056 (6.86) 0.51 1.243 

Table S8. Formula, space group, band gap at HSE level, energy barrier, 

polarization, the displacement (d) and the heat of formation (Ef) for 24 stable 2D 

ferroelectrics. Bold represents unreported materials.
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InP P3m1 1.811 False 0.069 0.116 (11.84) 0.53 0.354 

GaP P3m1 2.538 False 0.042 0.078 (9.35) 0.42 0.111 

The Ef of cubic-diamond is greater than zero (0.136 eV/atom), but it has been 

synthesized experimentally.33 Similarly, the Ef of T-carbon is far greater than zero 

(1.318 eV/atom),34 but it is also synthesized experimentally.35,36 Although the Ef of 

these materials is positive, they may still be synthesized experimentally.
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6.2 The ferroelectric phase transition barrier

We observed that the energy barriers of 24 stable 2D ferroelectrics generally increase 

with the increasing vertical displacements (d) (see Fig. S10 (a)). The sure independence 

screening and sparsifying operator (SISSO) algorithm37 was performed to obtain a 

feature for the energy barriers (Fig. S10 (b)), which has the form 

, where ,  and  are the radius of inner 𝐵𝑎𝑟𝑟𝑖𝑒𝑟 = 𝛼 × 𝑛𝑋 × 𝑛𝑀 × 𝑟𝑀(𝑖𝑛)

1
3 + 𝛽 𝑟𝑀(𝑖𝑛) 𝑛𝑋 𝑛𝑀

valence electrons of M, the number of valence electrons of M and X atoms, 

respectively, and the coefficients  and  are 0.095  and -6.815 eV, 𝛼 𝛽 𝑒𝑉 ∙ (𝑝𝑚)
‒

1
3

respectively. Thus the increasing number of valence electrons of constituent atoms 

could result in the larger energy barrier in these ferroelectrics. The high coefficient of 

determination value (R2=0.940) and the low mean absolute error (MAE=0.391) indicate 

the good fitting. Besides, the material with the largest error is NbN.

Figure S10. (a) The energy barrier for the ferroelectric-paraelectric phase transition 

versus the displacement (d). (b) Comparison of energy barriers between the 

predicted values obtained by the model  and 𝐵𝑎𝑟𝑟𝑖𝑒𝑟 = 𝛼 × 𝑛𝑋 × 𝑛𝑀 × 𝑟𝑀(𝑖𝑛)

1
3 + 𝛽

the DFT-calculated values. The dash line presents the ideal fitting line whose 

prediction error is zero.
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7. The energy versus polarization and Monte Carlo simulation

Figure S11. (a)(c)(e) SbAl, (b)(d)(f) BiB. (a)(b) The double-well energy versus 

polarization. The blue points are obtained by DFT. The blue line is the fitted curve by 

Landau-Ginzburg model. (c)(d) The dipole-dipole interactions. The blue points are the 

DFT-calculated total energy for different Pi-<Pj>. The red line is the fitting curve 

within harmonic approximation. (e)(f) The temperature dependence of polarization 

obtained by Monte Carlo (MC) simulations. 

 (e)(f)
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Figure S12. (a)(c)(e) InP, (b)(d)(f) GaP. (a)(b) The energy versus polarization. The 

blue points are results of DFT. The blue lines are the fitting curves by Landau-

Ginzburg model. (c)(d) The dipole-dipole interactions. The blue points are the DFT-

calculated total energy for different Pi-<Pj>. The red lines are the fitting curves within 

harmonic approximation. (e)(f) The temperature dependence of polarization obtained 

by Monte Carlo (MC) simulations.

 (e)(f)
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The Landau-Ginzburg expansion of the energy in terms of the polarization Pi as the 

order parameter was widely adopted to investigate phase transitions, 38, 39 in the form 

of

              
𝐸 = ∑

𝑖
[𝐴
2

𝑃2
𝑖 +

𝐵
4

𝑃4
𝑖 +

𝐶
6

𝑃6
𝑖] +

𝐷
2 ∑

< i,j >

(𝑃𝑖 ‒ 𝑃𝑗)
2

where Pi is the polarization of the i-th unit cell, <i,j> indicates the nearest neighbors, 

and A, B, C, D are fitting parameters. The double-well potential energy versus 

polarization curves are fitted using the first three terms of Eq. (S6) (Figs. S11(a)(b) and 

S12(a)(b)). The dipole-dipole interaction between the nearest neighboring unit cells 

was fitted by the last term of Eq. (S6) (Figs. S11(c)(d) and S12(c)(d)). The above 

parameters are obtained by fitting the DFT results, as listed in Table S9. With the 

effective model, the temperature dependence of polarization was calculated to identify 

the ferroelectric Curie temperatures Tc using Monte Carlo simulations. The results 

reveal that Tc of SbAl, BiB, InP and GaP can be about 800K, 700K, 800K and 700K, 

respectively (Figs. S11(e) (f) and S12(e) (f)), indicating that the ferroelectricity in the 

these 2D materials are very robust against thermal perturbations.

Formula

Barrier 

(meV/unit 

cell)

Polarization

(pC/m)
A B C D Tc (K)

SbAl 97 7.300 -7.587 1.602×10-1 -3.489×10-4 0.784 800

BiB 85 6.861 -7.444 1.753×10-1 -3.527×10-4 0.517 700

InP 71 11.835 -2.121 1.727×10-2 -1.542×10-5 0.349 800

GaP 38 9.353 -1.784 2.240×10-2 -2.220×10-5 0.622 700

Table S9. The energy barrier, the spontaneous polarization, the fitted parameters A, 

B, C and D in Eq. (S6), the estimated Curie temperature Tc (K).

(S6)
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8. 2D ferroelectric photovoltaic materials BiAs and BiSb

Comparing the density of states of the cases with and without SOC effect, we 

discovered that the SOC effect obviously increase the density of states near conduction 

bands of BiAs and BiSb (Fig. S13(a)(b)). The built-in fields existing in ferroelectric 

materials BiAs and BiSb generate two potential differences of 1.330 and 0.691 eV 

between the top and bottom surfaces (Figs. S13(c) (d)), respectively, which are on the 

same order of magnitude as that of In2Se3 (1.37 eV), 14 suggesting that the strong built-in 

field could be favorable for decreasing the carrier recombination probability.

Figure S13. Density of states and the electrostatic potentials averaged in xy-plane 
along the vertical z-direction of (a)(c) BiAs and (b)(d) BiSb. Blue solid lines and 
red dash lines of figure (a) and (b) indicate density of states with/without SOC 
effect, respectively.
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Structure Carrier direction C2D (N/m) m/m0 Ei (eV) μ 

(cm2V-

1s-1)
zigzag 42.77 0.081 -5.086 5335.68electron

armchair 42.71 0.081 -5.086 5327.41
zigzag 42.77 -0.643 -5.137 20.66

BiAs

hole
armchair 42.71 -1.625 -5.097 52.95
zigzag 36.09 0.072 -4.745 6544.82electron

armchair 36.10 0.072 -4.745 6547.90
zigzag 36.09 -0.545 -5.270 28.52

BiSb

hole
armchair 36.10 -1.195 -5.180 64.76

The carrier mobility at room temperature was calculated using the deformation 

potential theory. The results reveal that the electron mobility is much larger than that 

of the holes regardless of BiAs and BiSb (Table S10), indicating an electron-hole 

asymmetry, which is very beneficial to the separation of carriers.

Table S10. Calculated elastic modulus (C2D), effective mass (m/m0), deformation 
potential constant (Ei), and carrier mobility (μ) in the zigzag and armchair directions 
for 2D BiAs and BiSb at 300 K.



S32

9. The stability of the predicted 2D ferroelectric HBCs

Figure S14. The phonon spectra of (a) BiAs, (b) BiSb, (c) MoC, (d) WC, (e) 

BaPt2 and (f) BiB.
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Figure S14 shows the phonon spectra of six unreported ferroelectric materials, and 

they are dynamically stable with no observed imaginary modes in phonon spectra.

We performed ab initio molecular dynamics simulations at room temperature.  The 

results revealed that the time-dependent variations of energy per atom are oscillating 

within a very narrow range, showing these structures could maintain their original 

configurations at room temperature (see in Fig. S15), demonstrating that they possess 

good thermodynamic stabilities.

Figure S15. AIMD evolutions of average energy per atom for (a) BiAs, (b) BiSb, 
(c) WC, (d) MoC (e) BaPt2 and (f) BiB. The insets show the snapshots of these 
structures at 300 K after 12 ps AIMD simulations.
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