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S1. Room-temperature measurements 

In this section we present photocurrent measurements at room temperature, analogous to the 

low-temperature measurements showed in the main text. 

Supplementary Figure S1a shows a room temperature photocurrent spectrum acquired at 𝑉g −

𝑉th = −10 V with a power density of 1 mW cm-2, as well as its fit to a quintuple Lorentzian, 

corresponding to the five main exciton transitions described in the main text (TA, X1s
A, TB, X1s

B 

and X2s
A). Due to the thermal energy, the peaks of the spectrum are broadened and red-shifted in 

comparison with the low temperature photocurrent spectrum presented in Supplementary Section 

2. 

Supplementary Figure S1b shows the transfer curve of the device at Vds = 10 V. As expected, the 

increase in the current near the threshold voltage is here less abrupt than at low temperature. 

Supplementary Figure S1- Room temperature photocurrent measurements. (a) Photocurrent spectrum 

of the 1L-MoS2 phototransistor (gray solid line) and multi-lorentzian fitting (black solid line). The five 

main transitions are depicted in the figure. (b) Transfer curve of the device in dark at room temperature 

and Vds=10V. (c-d) Gate dependence of the photocurrent depicted with the transconductance of the 

device in resonance with the exciton A at different frequencies of modulation (c) f = 31.81 Hz and (d) f 

= 1kHz. (e) Power dependence of the photocurrent at Vg-Vth=10V in resonance with the exciton A and 

B. The solid lines correspond to the fittings of the data to eq. 13. (f) Power dependence of the 

photocurrent at Vg-Vth = – 10 V, in resonance with the exciton A.   



Supplementary Figures 1c and 1d show the photocurrent as a function of the gate voltage Vg for 

illumination at E=1.87 eV and two different light-modulation frequencies: 𝑓 =  31.81 Hz (c) and 

𝑓 =  1 kHz (d). Consistently with the results and the theoretical model presented in the main text, 

the photocurrent is strongly correlated with the transconductance of the device regardless of the 

modulation frequency. It is worth remarking that, for the room-temperature measurements 

presented here, the photocurrent measured at low modulation frequency is roughly 8 times larger 

than the one measured at 1 kHz, indicating that the effect of slow-responding traps due to polar 

adsorbates is much stronger at room temperature than at T = 5 K. 

Finally, Supplementary Figure S1e shows the power dependence of the photocurrent at 

Vg – Vth = 10 V, for two different illumination energies, matching the A and B exciton transitions, 

E=1.87 eV and E=2.01 eV respectively. The illumination power dependence of IPC is sublinear, as 

expected for the photogating effect. Similarly to our results at low temperature, the illumination 

power dependence of IPC becomes linear for gate voltages below the threshold voltage (see 

Supplementary Figure S1f), indicating that for this regime, the photoconductivity is dominated by 

the photoconductive effect.  

 

  



S2. Photocurrent spectroscopy 

Supplementary Figure S2 shows a photoconductivity spectrum of our device acquired for 𝑉ds =

10 V, and 𝑉g − 𝑉th = −30 V. At low temperature the main excitonic spectral features can be 

clearly resolved, with bandwidths as low as 8 meV.1 The spectrum presents two main peaks 

corresponding to the A and B neutral excitons (X1s
A  and X1s

B  respectively), as well as three smaller 

features corresponding to the trion states (TA and TB) and the 2s excited state X2s
A  of the A exciton. 

Detailed information on the experimental setup for photocurrent spectroscopy, as well as an in-

depth analysis of the spectral features in 1L-MoS2 transistors can be found in ref. 1. The sample is 

placed inside a pulse-tube cryostat (T = 5 K) and the whole device is exposed to laser illumination 

through an optical access. For illumination we use a SuperK Compact supercontinuum laser from 

NKT photonics, and the excitation wavelength is selected by an Oriel MS257 monochromator 

(1200 lines/mm). Using this light source allows us to scan the spectral range from 450 nm to 840 

nm. The excitation signal is modulated by an optical chopper and the photocurrent is registered by 

a lock-in amplifier. 

 

 

 

  

Supplementary Figure S2. Low-

temperature photocurrent spectrum of the 

encapsulated 1L-MoS2 device. 



S3. Extended discussion on power dependence of PCE 

In the main text (equation 10) we obtained an expression for the increase of photoconductivity 

caused by the photoconductive effect (PCE): 

Δ𝜎PCE = 𝑞(𝜇n + 𝜇p)𝑝ph + 𝑞𝜇p𝑝t,  (1) 

Replacing  𝑝ph and 𝑝t by their expressions (equations 8 and 9 in the main text) we get: 

Δ𝜎PCE = 𝑞𝜏r(𝜇n + 𝜇p)𝜙A  + 𝑞𝜇p

𝜙A𝐷t𝜏𝑟

𝜙A𝜏r + 𝐷t (
𝜏t

𝜏d
)

,  (2) 

The first term in the right-hand side of equation (2) is linear with the power (note that 𝜙A ∝ 𝑃D). 

Thus, in absence of trap states, i.e. for 𝐷t = 0, Δ𝜎PCE is linear with the power (as long as the main 

relaxation mechanism is Shockley-Read-Hall recombination). When a finite density of traps is 

present, it is useful to consider the three following situations: 

(i) 𝜙A ≫ 𝐷t
𝜏t

𝜏r𝜏d
 

This is the relevant scenario illumination power densities large enough for the trap states to become 

saturated. Under this situation, the second right-hand term in equation (2) can be simplified as 

𝑞𝜇p𝜙A𝐷t𝜏𝑟

𝜙A𝜏r + 𝐷t (
𝜏t

𝜏d
)

≈ 𝑞𝜇p𝐷t ,  (3) 

which gives only a constant contribution to Δ𝜎PCE. Thus, the total photoconductivity remains linear 

with the power: 

Δ𝜎PCE ≈ 𝑞𝜏t(𝜇n + 𝜇p)𝜙A  + 𝑞𝜇p𝐷t,  (4) 

(ii) 𝜙A ≪ 𝐷t
𝜏t

𝜏r𝜏d
 

For very low illumination power, the density of available trap states only changes by a very small 

amount due to light exposure. Under this situation, the second right-hand term in equation (2) can 

be again simplified as 

𝑞𝜇p𝜙A𝐷t𝜏𝑟

𝜙A𝜏r + 𝐷t (
𝜏t

𝜏d
)

≈ 𝑞𝜇p

𝜏d𝜏r

𝜏t
𝜙A ,  (5) 

which now gives a linear contribution to Δ𝜎PCE. Again, the total photoconductivity remains linear 

with the power: 



Δ𝜎PCE ≈ (𝑞𝜏t(𝜇n + 𝜇p) + 𝑞𝜇p

𝜏d𝜏r

𝜏t
) 𝜙A ,  (6) 

In this scenario, the effect of localized states is to enhance the slope of Δ𝜎PCE while keeping it 

linear with the power density. 

(iii) 𝜙A ≈ 𝐷t
𝜏t

𝜏r𝜏d
 

Finally, for intermediate power densities, equation (2) cannot be simplified and the presence of 

localized states results in a sublinear contribution to photocurrent. 

  



S4. Estimation of carrier density and Fermi energy shift 

Note: The measurements presented in this article were performed in the same device studied in an 

earlier publication by the authors1. This supplementary section is reprinted from the 

Supplementary Information of the mentioned publication for convenience of the readers. 

 

In the following we use a capacitor model to estimate the increase in carrier density 𝛿𝑛 produced 

by the gate voltage. The gate voltage Vg, i.e. the total voltage drop between the Si back gate and 

the MoS2 channel, will be given by 

𝛿𝑉g = 𝛿𝐸 ∙ 𝑑 +
1

𝑒
𝛿𝐸F (7) 

 

Where E is the electric field between the electrode and the flake, −𝑒 is the electron charge and 𝐸F 

is the Fermi energy. For a parallel plate with two different insulator layers the geometrical 

capacitance is 

𝐶g = (
𝑑𝑆𝑖𝑂2

𝜖0𝜖𝑆𝑖𝑂2

+
𝑑𝐵𝑁

𝜖0𝜖𝐵𝑁
)

−1

, (8) 

 

and we have 

𝛿𝐸 ∙ 𝑑 =
𝑒𝛿𝑛

𝐶g
 . 

 

(9) 

 

Replacing in (S8) and using 𝛿EF = (𝛿EF/𝛿𝑛) 𝛿𝑛 = 𝛿𝑛/𝐷, where D is the density of states of the 

2D semiconductor, we get 

𝛿𝑉g =
𝑑𝑒

𝜖0𝜖𝑑
∙ 𝛿𝑛 +

1

𝑒𝐷
𝛿𝑛 = (

1

𝐶g
+

1

𝐶q
)  𝑒𝛿𝑛 , 

 

(10) 

where we have defined the quantum capacitance as 𝐶q = 𝑒2𝐷. We can now express equation (10) 

in terms of the Fermi energy using 𝛿𝐸F = 𝛿𝑛/𝐷. We get 

𝛿𝑉g = (
1

𝐶g
+

1

𝐶q
)  𝑒𝐷 𝛿𝐸F = (

1

𝐶g
+

1

𝐶q
)

𝐶q

𝑒
 𝛿𝐸F . 

 

(11) 

Therefore, solving for EF, we have 

𝛿𝐸F =
𝑒𝛿𝑉g

1 +
𝐶𝑞

𝐶𝑔

   . 
(12) 



 

We model the density of states of 1L-MoSe2 as the step function 

𝐷(𝐸) = {
𝑔2𝐷 ≡

𝜇eff

𝜋ℏ2
          if 𝐸 > 𝐸CB

 
0                  if 𝐸 > 𝐸CB

    , 

 

(13) 

where 𝜇eff is the electron effective mass in MoS2 (𝜇eff = 0.35 𝑚0) and ECB is the edge of the 

conduction band. Then, by integrating equation (12) we get 

Δ𝐸F =
𝑒

1 +
𝑒2𝑔2D

𝐶g

(𝑉g − 𝑉th)  , 
(14) 

where Vth is the threshold voltage at which EF = ECB. In our case, we get Δ𝐸F/(𝑉g − 𝑉th) =

0.28 meV V−1, which for the maximal gate voltages applied here (𝑉g − 𝑉th = 50V) gives Δ𝐸F =

14 meV. Finally, the density of excess carriers, n can be obtained as 𝑛 = Δ𝐸F ∙ 𝑔2D =

7.17 × 1010cm−2V−1(𝑉g − 𝑉th). Thus, the maximal carrier densities reached here are of 𝑛 =

3.58 × 1012cm−2. 

  



S5. Raman and photoluminescence characterization 

Note: The measurements presented in this article were performed in the same device studied in an 

earlier publication by the authors1. This supplementary section is reprinted from the 

Supplementary Information of the mentioned publication (with minor changes) for convenience of 

the readers. 

We determine the thickness of the MoS2 flakes used for device fabrication by a combination of 

optical microscopy, Raman mapping and photoluminescence. Supplementary Figure S3a shows 

an optical microscope image of the MoS2 flake used to fabricate the device described in the main 

text, and Supplementary Figure S3b shows a false color map of the ratio between the summed 

intensities of the A1g + E1
2g Raman peaks of MoS2 and the intensity of the Si peak, in logarithmic 

scale. The different thicknesses can be clearly distinguished in the figure. Supplementary Figure 

S3c shows individual spectra acquired at the different regions labelled in Supplementary Figure 

S3a. The number of layers can be here confirmed by the difference between the spectral positions 

of the E1
2g and A1g peaks, 𝛥𝑓.2,3 For the thinnest region we obtain Δ𝑓 = 19.4 cm−1, compatible 

with the values given in literature for 1L-MoS2. 

Supplementary Figure S3. Raman 

characterization of the MoS2 thickness. (a) 

Optical microscopy image of the MoS2 

flake used for the device of the main text. 

The labels indicate regions with different 

thickness. (b) False color Raman map of 

the difference between the A1g and Si peak 

intensities, as labeled in panel c. (c) 

Raman spectra acquired at the different 

regions labelled in Figure 1a. The spectra 

show three prominent peaks corresponding 

to the A1g and E1
2g Raman modes of MoS2 

and the Si Raman mode. 



We further confirm the thickness of the MoS2 flakes by measuring the position of the A exciton 

peak in their photoluminescence spectrum. Supplementary Figure S4 shows a room-temperature 

photoluminescence spectrum acquired at the monolayer MoS2 flake. The X1s
A  exciton peak can be 

clearly observed at around 1.87 eV, in good agreement with the values found in literature.3–5 

 

 

 

S6. Optical image of the device 

 

 

 

Supplementary Figure S5. Optical 

image of the encapsulated 1L-MoS2 

device. 

Supplementary Figure S4. Room-

temperature photoluminescence 

spectra of monolayer MoS2 on SiO2 

under 530 nm excitation. The 

dashed lines are the individual 

contributions from the TA, X1s
A  and 

X1s
B  exciton transitions. 



S7. Derivation of photoconductive gain 

It can be convenient in some cases to express the device’s photoresponse in terms of the 

photoconductive gain 𝐺𝑝ℎ. This quantity is defined as the ratio between the number of charge 

carriers collected by the electrodes and the number of absorbed photons: 

𝐺𝑝ℎ =
collected charge carriers

absorbed photons
=

𝑞−1𝐼PC

𝜙A𝑊𝐿
  (155) 

where q is the elementary charge, and W and L are the width and length of the semiconductor 

channel, respectively. 

In a trap-free semiconductor, in absence of photogating effect, the photoconductive gain can be 

obtained as 6 

𝐺𝑝ℎ =
𝜏r

𝜏tr,n
+

𝜏r

𝜏tr,p
  (166) 

where 𝜏r is the electron-hole recombination lifetime and 𝜏tr,n (𝜏tr,p) is the transit time for electrons 

(holes), i.e. the time required for an electron (hole) to drift across the semiconductor channel, from 

the source to the drain electrode. 

Let us now derivate the expression of 𝐺𝑝ℎ in the presence of shallow states such as the ones 

considered in the main text. To do so, it results convenient to separate IPC into its photoconductive 

(Δ𝐼PCE) and photogating (Δ𝐼PGE) contributions. For Δ𝐼PCE, combining equations 2 and 3 of the main 

text we have 

Δ𝐼PCE =
W

L
𝑉ds𝑞(𝜇n𝑛ph + 𝜇p𝑝ph).  (17) 

Assuming a uniform electric field E across the channel, we can write 𝑉ds = 𝐸𝐿. Then, reordering 

terms we have 

 

Δ𝐼PCE = 𝑞𝑊𝐿 (
𝐸𝜇n

𝐿
𝑛ph +

𝐸𝜇p

𝐿
𝑝ph) = 𝑞𝑊𝐿 (

𝐸(𝜇n + 𝜇p)

𝐿
𝑝ph +

𝐸𝜇p

𝐿
𝑝t).  (18) 

Equation 18 can now be rewritten in terms of the electron and hole transit times 𝜏tr,n = 𝐿/𝐸𝜇n and 

𝜏tr,p = 𝐿/𝐸𝜇p. This yields 

Δ𝐼PCE = 𝑞𝑊𝐿 (𝑝ph (
1

𝜏tr,n
+

1

𝜏tr,p
) +

𝑝t

𝜏tr,p
 ).  (19) 

We now replace 𝑝ph and 𝑝t by their expressions from equations 9 and 10 of the main text:  



Δ𝐼PCE = 𝑞𝑊𝐿 (𝜙A𝜏r (
1

𝜏tr,n
+

1

𝜏tr,p
) +

𝜏𝑟

𝜏tr,p
 

𝜙A𝐷t

𝜙A𝜏r + 𝐷t (
𝜏t

𝜏d
)

 ).  (19) 

Finally, using equation 15 for the photoconductive gain we get 

𝐺ph,PCE =
𝑞−1𝛥𝐼PCE

𝜙A𝑊𝐿
=

𝜏r

𝜏tr,n
+

𝜏r

𝜏tr,p
+

𝜏𝑟

𝜏tr,p
 

𝜙A𝐷t

𝜙A𝜏r + 𝐷t (
𝜏t

𝜏d
)

 .  (20) 

 

For Δ𝐼PGE equation 14 in the main text gives  

𝐼PGE =
𝐷t

𝛽

𝑑𝐼ds

𝑑𝑉g

1

1 +
𝐷t

𝜙A𝜏𝑟
(

𝜏t

𝜏d
)

 , 
 (21) 

Which corresponds to a photoconductive gain of 

𝐺ph,PGE =
𝐷t

𝑞𝑊𝐿𝛽

𝑑𝐼ds

𝑑𝑉g

1

𝜙A +
𝐷t

𝜏𝑟
(

𝜏t

𝜏d
)

 , 
 (22) 

The total photoconductive gain in the device will be the sum of the two contributions: 

𝐺ph = 𝐺ph,PCE + 𝐺ph,PGE  (23) 

𝐺ph =
𝜏r

𝜏tr,n
+

𝜏r

𝜏tr,p
+ (

𝜙A𝜏𝑟

𝜏tr,p
+ 𝜏𝑟

1

𝑞𝑊𝐿𝛽

𝑑𝐼ds

𝑑𝑉g
) 

𝐷t

𝜙A𝜏r + 𝐷t (
𝜏t

𝜏d
)

 ,  (24) 

Thus, the presence of shallow traps results in an increase in the photoconductive gain, compared 

to the trap-free situation. Note that, if the density of trap states is set to zero, 𝐷t = 0, the third 

term in the right-hand side of equation 24 cancels out, and we recover the expression of 𝐺ph for a 

trap-free scenario (equation 15). 
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