Electronic Supplementary Information

Surface overgrowth on gold nanoparticles modulating high-energy facets for efficient electrochemical CO₂ reduction

Woong Choi,^{*a,‡,§*} Joon Woo Park,^{*a,§*} Woonghyeon Park,^{*b*} Yousung Jung, *^{*b*} and Hyunjoon Song*^{*a*}

a. Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. E-mail: <u>hsong@kaist.ac.kr</u>

b. Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. E-mail: <u>ysjn@kaist.ac.kr</u>

‡ Present Address: Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

[§] These authors contributed equally.

Fig. S1 (a) Total current densities and partial Faradaic efficiencies of the gaseous products during eCO₂RR using (b) **Ih**, (c) **s-NS**, and (d) **l-NS**. (e) i-t graph of potential-dependent eCO₂RR measurements of **Ih**, **s-NS**, **l-NS**, and Au foil.

Fig. S2 (a) CO current densities and (b) Faradaic efficiencies of Au catalysts with applied potentials vs. Ag/AgCl without iR correction.

Fig. S3 (a) CO current densities and (b) Faradaic efficiencies of Au/C catalysts with Au loading ratios of 7, 11, and 40 wt %.

Fig. S4 Cyclic voltammograms (CV) for ECSA measurements of the Au catalysts. The CVs were performed in a 50 mM H_2SO_4 electrolyte at a scan rate of 50 mV s⁻¹.

Fig. S5 (a) The CO FEs and (b) current densities of **Ih** (black) and **I-NS** (red) during the durability test for 4 h. TEM images of (c) **Ih** and (d) **I-NS** on the conductive carbon materials after the durability test. The bars represent 20 nm.

Fig. S6 Additional TEM images of **I-NS** and their corresponding projections of the threedimensional model covered solely with {321} facets on the surface. The average angle deviations are (a) 2.3, (b) 4.3, and (c) 4.1 degrees. The bars represent 20 nm.

Fig. S7 Tafel plots of CO production on **Ih** (black), **s-NS** (blue), **I-NS** (red), and Au foil (green). Solid lines represent experimental values, and dash lines represent trend lines for measuring the Tafel slopes.

Fig. S8 Nyquist plots of Ih (black), s-NS (blue), and I-NS (red) from EIS at -0.36 V vs. RHE.

Catalysts	E vs RHE (V)	CO FE (%)	CO Mass Activity (A g ⁻¹)	Electrolyte	Membrane	Ref.
This Work	-0.7	95	121.6	0.5 M KHCO3	Nafion	
Au NPs	-0.52	97	3	0.5 M KHCO ₃	Nafion	1
Au NPs	-1.2	45	-	0.1 M KHCO ₃	-	2
Au rhombohedral	-1.0	70	9	0.5 M KHCO3	without membrane	3
Au nanowires	-0.35	94	1.84	0.5 M KHCO3	Nafion	4
Ag NPs with cysteine	-0.75	84.4	30	0.5 M KHCO3	Nafion	5
Oleylamine capped Ag NPs	-0.75	92.6	75	0.5 M KHCO3	Nafion	6
Ag triangle NPs	-0.855	96.8	-	0.1 M KHCO3	Nafion	7
Ag@Au core- shell nanowires	-1.2	99.3	11.8	0.1 M KCl	Nafion	8
Au NPs on mesoporous carbon	-0.66	80	12	0.5 M KHCO3	No membrane (glass frit)	9
Au ₈₀ Ag ₂₀ NPs, ~25 nm	-0.7	60	3.7	0.1 M NaHCO ₃	Nafion	10
Au ₂₅ cluster/C	-1.0	Аррох. 100	-	0.1 M KHCO ₃	Nafion	11
Au ₄₄ (TBBT) ₂₈ cluster/C	-0.57	83	30.8	0.5 M KHCO3	Nafion	12

Table S1. Faradaic efficiencies and mass activities of Au and Ag nanocatalysts for eCO₂RR.

Table S1. (cont.).

Catalysts	E vs RHE (V)	CO FE (%)	CO Mass Activity	Electrolyte	Membrane	Ref.
Au ₄₇ Cd ₂ (TBBT) ₃₁ cluster/C	-0.57	96	(A g ⁻) 55.6	0.5 M KHCO3	Nafion	12
Amidinate- protected Au ₂₈ cluster/CNT	-0.57	96.5	79.0 (-0.6 V) 113.0 (-0.7 V) 318.7 (-0.87 V)	0.5 M KHCO3	Nafion	13
Oleylamine- capped Au NP	-0.65	63.5	23.2 (-0.65 V) 35.8 (-0.7 V) (approx.)	0.5 M KHCO3	Selemion	14
Porphyrin- modified Au NP	-0.45	94	221 (-0.65 V) 262 (-0.7 V) (approx.)	0.5 M KHCO ₃	Selemion	14
PEG-modified commercial Au/C	-0.77	75.6	-	0.5 M KHCO3	N/A	15
PEG-modified liquid-medium sputtering Au/C	-0.57	100	-	0.5 M KHCO3	N/A	15
Au-N- heterocyclic carbene NP	-0.57	83%	-	0.1 M KHCO3	Selemion AMV	16

Catalysts	Ih	s-NS	l-NS	Au foil
Integration value (A·V)	2.37×10 ⁻⁵	1.96×10 ⁻⁵	1.17×10 ⁻⁵	8.53×10 ⁻⁶
ECSA (cm ²)	1.06	0.88	0.52	0.38

Table S2. Integration values of Au catalysts from CVs for calculating ECSAs.

Supplementary Methods

Calculation of Faradaic Efficiency

The equation below shows how the Faradaic efficiency (FE_{gas}) for each gaseous product was derived.

$$FE_{gas} = \frac{i_{gas}}{i_{total}} \times 100 \ (where, \ i_{gas} = c_{gas} \times f \times \frac{n_{gas}Fp_0}{RT})$$

The current density of the products (i_{gas}) was derived from the concentrations (c_{gas}) measured by integrating the peaks of gas chromatogram results. n_{gas} is 2 for both H₂ and CO. f, F, p₀, **R**, and **T** stands for flow rate, faradaic constant, gas pressure, ideal gas constant, and temperature, respectively.¹⁷

Calculation of ECSA values

The peak from the oxidation scan at 0.9 to 1.0 V vs. Ag/AgCl was integrated, where the integration value is proportional to ECSA, scan rate, and reduction charge per unit area.

$$ECSA(cm^{-2}) = \frac{Intergration \ value(A \cdot V)}{scan \ rate(V \cdot s^{-1}) \times reduction \ charge \ per \ unit \ area \ (C \cdot cm^{-2})}$$

Generalized coordination number (GCN)

The GCN of atom i is estimated as follows:

$$GCN(i) = \sum_{j=1}^{n_i} \frac{cn(j)n_j}{cn_{max}}$$

where cn(j) is a usual coordination number of neighboring atoms of *i* and cn_{max} is the maximum number of the first-nearest neighbors in bulk.¹⁸

References

- W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson and S. Sun, J. Am. Chem. Soc., 2013, 135, 16833-16836.
- H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser and B. R. Cuenya, J. Am. Chem. Soc., 2014, 136, 16473-16476.
- H.-E. Lee, K. D. Yang, S. M. Yoon, H.-Y. Ahn, Y. Y. Lee, H. Chang, D. H. Jeong, Y.-S. Lee, M. Y. Kim and K. T. Nam, *ACS Nano*, 2015, 9, 8384-8393.
- W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson and S. Sun, J. Am. Chem. Soc., 2014, 136, 16132-16135.
- C. Kim, H. S. Jeon, T. Eom, M. S. Jee, H. Kim, C. M. Friend, B. K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2015, 137, 13844-13850.
- C. Kim, T. Eom, M. S. Jee, H. Jung, H. Kim, B. K. Min and Y. J. Hwang, ACS Catal., 2017, 7, 779-785.
- S. Liu, H. Tao, L. Zeng, Q. Liu, Z. Xu, Q. Liu and J.-L. Luo, J. Am. Chem. Soc., 2017, 139, 2160-2163.
- J. Liu, Y. Wang, H. Jiang, H. Jiang, X. Zhou, Y. Li and C. Li, *Chem. Asian J.*, 2020, 15, 425-431.
- M. Miola, X.-M. Hu, R. Brandiele, E. T. Bjerglund, D. K. Grønseth, C. Durante, S. U. Pedersen, N. Lock, T. Skrydstrup and K. Daasbjerg, *J. CO₂ Util.*, 2018, 28, 50-58.
- 10. A. M. Ismail, E. Csapó and C. Janáky, *Electrochim. Acta*, 2019, 313, 171-178.
- D. R. Kauffman, D. Alfonso, C. Matranga, H. Qian and R. Jin, J. Am. Chem. Soc., 2012, 134, 10237-10243.
- 12. S. Zhuang, D. Chen, L. Liao, Y. Zhao, N. Xia, W. Zhang, C. Wang, J. Yang and Z. Wu, *Angew. Chem. Int. Ed.*, 2020, **59**, 3073-3077.

- S.-F. Yuan, R.-L. He, X.-S. Han, J.-Q. Wang, Z.-J. Guan and Q.-M. Wang, *Angew. Chem. Int. Ed.*, 2021, **60**, 14345-14349.
- Z. Cao, S. B. Zacate, X. Sun, J. Liu, E. M. Hale, W. P. Carson, S. B. Tyndall, J. Xu, X. Liu, X. Liu, C. Song, J.-h. Luo, M.-J. Cheng, X. Wen and W. Liu, *Angew. Chem. Int. Ed.*, 2018, 57, 12675-12679.
- M. W. Chung, I. Y. Cha, M. G. Ha, Y. Na, J. Hwang, H. C. Ham, H.-J. Kim, D. Henkensmeier,
 S. J. Yoo, J. Y. Kim, S. Y. Lee, H. S. Park and J. H. Jang, *Appl. Catal.*, *B*, 2018, 237, 673-680.
- Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E. M. Nichols, K. Jeong, J. A. Reimer,
 P. Yang and C. J. Chang, *J. Am. Chem. Soc.*, 2016, **138**, 8120-8125.
- J. Kim, W. Choi, J. W. Park, C. Kim, M. Kim and H. Song, J. Am. Chem. Soc., 2019, 141, 6986-6994.
- F. Calle-Vallejo, J. I. Martínez, J. M. García-Lastra, P. Sautet and D. Loffreda, Angew. Chem. Int. Ed., 2014, 53, 8316-8319.