Supplementary Information for:

Unusual interlayer coupling in layered Cu-based ternary chalcogenides CuMCh₂(M=Sb, Bi; Ch=S, Se)

Dan-Dong Wang,[†] Xin-Gao Gong,^{†§‡*} and Ji-Hui Yang^{†‡*}

[†]Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China

[‡]Shanghai Qi Zhi Institute, Shanghai 200232, China

[§]Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China *corresponding author

Email: jhyang04@fudan.edu.cn; xggong@fudan.edu.cn

1. The phonon spectrum of $CuSbS_2$ monolayer and bilayer.

Figure S1. The phonon spectrum of $CuSbS_2$ (a) monolayer and (b) bilayer.

2. HSE calculated band structure of CuSbS₂ monolayer.

Figure S2. HSE band structure (see the blue inset for the high symmetrical K-points) without the spin-orbit coupling for monolayer $CuSbS_2$ where the Fermi level has been set to 0 eV.

3. The optical absorption spectra of in $CuSbS_2$ monolayer and $CuSbSe_2$ monolayer.

Figure S3. The optical absorption spectra of (a) $CuSbS_2$ monolayer and (b) $CuSbSe_2$ monolayer.

4. Band alignments from the CuSbS₂ monolayer to four layers.

Figure S4. The band edge positions changes with same lattice constants from the $CuSbS_2$ monolayer to four layers by using the vacuum level as a common reference. The 'vbm-vac' means the VBM minus the vacuum level, and the 'cbm-vac' means the CBM minus the vacuum level.

5. Structures, electronic structures, and atomic orbital projected band structures in CuMCh₂(M=Sb, Bi; Ch=S, Se)

Figure S5. The structure, band structure, and atomic orbitals of the monolayer CuSbSe₂. (a) and (b) are the top and side views respectively. (c)HSE energy band structure calculations (see the blue inset for the high symmetrical K-points) with the spin-orbit coupling and Van der Waals interactions, where the Fermi level has been set to 0 eV. (d), (e) and (f) are atomic orbital projected band structures in Cu, Sb, Se atoms respectively. The Cu, Sb, Se atoms are shown as blue, brown and green spheres, respectively.

Figure S6. The structure, band structure, and atomic orbitals of the bilayer CuSbSe₂. (a) and (b) are the top and side views respectively. (c)HSE energy band structure calculations (see the blue inset for the high symmetrical K-points) with the spin-orbit coupling and Van der Waals interactions, where the Fermi level has been set to 0 eV. (d), (e) and (f) are atomic orbital projected band structures in Cu, Sb, Se atoms respectively. The Cu, Sb, Se atoms are shown as blue, brown and green spheres, respectively.

Figure S7. The structure, band structure, and atomic orbitals of the monolayer $CuBiS_2$. (a) and (b) are the top and side views respectively. (c)HSE energy band structure calculations (see the blue inset for the high symmetrical K-points) with the spin-orbit coupling and Van der Waals interactions, where the Fermi level has been set to 0 eV. (d), (e) and (f) are atomic orbital projected band structures in Cu, Bi, S atoms respectively. The Cu, Bi, S atoms are shown as blue, purple and yellow spheres, respectively.

Figure S8. The structure, band structure, and atomic orbitals of the bilayer $CuBiS_2$. (a) and (b) are the top and side views respectively. (c)HSE energy band structure calculations (see the blue inset for the high symmetrical K-points) with the spin-orbit coupling and Van der Waals interactions, where the Fermi level has been set to 0 eV. (d), (e) and (f) are atomic orbital projected band structures in Cu, Bi, S atoms respectively. The Cu, Bi, S atoms are shown as blue, purple and yellow spheres, respectively.

Figure S9. The structure, band structure, and atomic orbitals of the monolayer CuBiSe₂. (a) and (b) are the top and side views respectively. (c)HSE energy band structure calculations (see the blue inset for the high symmetrical K-points) with the spin-orbit coupling and Van der Waals interactions, where the Fermi level has been set to 0 eV. (d), (e) and (f) are atomic orbital projected band structures in Cu, Bi, Se atoms respectively. The Cu, Bi, Se atoms are shown as blue, purple and green spheres, respectively.

Figure S10. The structure, band structure, and atomic orbitals of the bilayer CuBiSe₂. (a) and (b) are the top and side views respectively. (c)HSE energy band structure calculations (see the blue inset for the high symmetrical K-points) with the spin-orbit coupling and Van der Waals interactions, where the Fermi level has been set to 0 eV. (d), (e) and (f) are atomic orbital projected band structures in Cu, Bi, Se atoms respectively. The Cu, Bi, Se atoms are shown as blue, purple and green spheres, respectively.

6. Carrier mobilities.

Figure S11. The slopes of (a) and (b) are respectively the deformation potential constants of the electron and hole of $CuSbS_2$ along the x direction, (c) and (d) are the deformation potential constants of the electron and hole of $CuSbS_2$ along the y direction respectively. The 'vbm-vac' means the VBM minus the vacuum level, and the 'cbm-vac' means the CBM minus the vacuum level. The red dots of (b) and (d) deviate more, so these data are omitted.

Figure S12. The slopes of (a) and (b) are respectively the deformation potential constants of the electron and hole of CuSbSe₂ along the x direction, (c) and (d) are the deformation potential constants of the electron and hole of CuSbSe₂ along the y direction respectively. The 'vbm-vac' means the VBM minus the vacuum level, and the 'cbm-vac' means the CBM minus the vacuum level.

Figure S13. (a) and (b) are the fitting of the total energies of $CuSbS_2$ as functions of in-plane strains along the x direction and the y direction respectively, (c) and (d) are the fitting of the total energies of $CuSbSe_2$ as functions of in-plane strains along the x

direction and the y direction respectively. S_0 denotes the in-plane area under equilibrium.

materials	$m_{x}^{*}(m_{0})$	$m_y^*(m_0)_{\square}$	$E_{1x}(J \cdot 10^{-19})$	$E_{1y}(J \cdot 10^{-19})_{\Box}$	$C_{2D-x}(J/m^2)$	$C_{2D-y}(J/m^2)$	$\mu_{2D-x}(cm^2/(V\cdot s))_{\square}$	$\mu_{2D-y}(cm^2/(V\cdot s))$
CuSbS ₂ (electron)	0.25	2.49	12.37	4.46	33.12	62.56	59.94	87.44
CuSbS ₂ (hole)	0.67	0.85	4.16	1.23	33.12	62.56	208.3	3547.56
CuSbSe ₂ (electron)	0.27	2.25	10.02	3.52	23.74	50.78	61.41	127.72
CuSbSe ₂ (hole)	0.52	0.72	4.42	1.8	23.74	50.78	209.52	1951.68

Table S1. The carrier mobility of monolayer CuSbCh₂(Ch=S, Se) with direct bandgaps using the deformation potential with formula $\mu_{2D} = \frac{e\hbar^3 C_{2D}}{k_B T m^* m_d E_1^2} \lim_{[1-4], \text{ where }} \frac{e\hbar^3}{k_B T} \sim \frac{e\hbar^3}{k_B T}$

using the deformation potential with formula $k_B T m^* m_d E_1^2$ [1-4], where $\overline{k_B T} \sim 4.539 \times 10^{-101} C J^2 \cdot s^3$; m_d , defining $m_d = \sqrt{m_x^* m_y^*}$, is the average effective mass of ΔE

$$E_1 = \frac{\Delta E}{\Delta (\frac{\Delta l}{L})}$$

the carrier; k_B is Boltzmann's constant; E_1 , which is defined as $\Delta(\overline{l_0})$, denotes the deformation potential constant of hole or electron along the direction of transmission;

$$C_{2D} = \frac{2}{S_0} \times \frac{\partial^2 E}{\partial (\frac{\Delta l}{l_0})^2}$$

the crystal's the elastic modulus l_0 , m^* denotes the effective mass along the direction of transmission. ΔE is the energy change of CBM or VBM under in-plane compression or tensile strain; l_0 is the equilibrium lattice constant in the direction of transmission, and Δl is the deformation of l_0 . S_0 denotes in-plane area under equilibrium. m_0 denotes electron mass with value of 9.11×10^{-31} kg. μ_{2D} denotes carrier mobility. Temperature T is set to 300 K. The unit 1V = 1J/C.

7. Bandgaps ca bilaver CuMCh	lculate 2018/00/10/10	ed by PBE Sb. Bi: Ch [.]	/HSE v =S, Se)	with/witho	ut SO	C betwee	n mon	olayer and
function	2			PBE+'	VdW			

function			PBE+VdW					
layers	CuSbS ₂	CuSbS ₂ +SOC	CuSbSe ₂	CuSbSe ₂ +SOC	CuBiS ₂	CuBiS ₂ +SOC	CuBiSe ₂	CuBiSe ₂ +SOC
monolayer-bandgap(eV)	0.41	0.40	0.21	0.19	0.34	0.26	0.19	0.14
bilayer-bandgap(eV)	0.6	0.58	0.3	0.27	0.47	0.39	0.27	0.21

Table S2. The bandgaps obtained using PBE functionals with/without the SOC effects and all data consider Van der Waals interactions.

function		HSE+VdW						
layers	CuSbS ₂	CuSbS ₂ +SOC	CuSbSe ₂	CuSbSe ₂ +SOC	CuBiS ₂	CuBiS ₂ +SOC	CuBiSe ₂	CuBiSe ₂ +SOC
monolayer-bandgap(eV)	1.18	1.16	0.89	0.81	1.00	0.88	0.73	0.53
bilayer-bandgap(eV)	1.37	1.35	0.99	0.95	1.08	1.00	0.81	0.71

 Table S3. The bandgaps obtained using HSE functionals with/without the SOC effects and all data consider Van der Waals interactions.

8. The bandgaps changes from $CuSbS_2/CuBiS_2$ monolayer to $CuSbS_2-CuBiS_2$ Van der Waals heterojunction.

	$Monolayer\text{-}CuSbS_2$	Monolayer-CuBiS $_2$	$Hetero\text{-}CuSbS_2$	$Hetero-CuBiS_2$
bandgap(eV) at Γ point	1.13	0.98	1.23	1.33

Table S4. The bandgaps in $CuSbS_2/CuBiS_2$ monolayer and $CuSbS_2-CuBiS_2$ Van der Waals heterojunction.

9. Hopping integrals

Table S5. Orbital hopping integrals in the bilayer $CuSbSe_2$, where $Se^{(4)}-p_z$ indicates the p_z orbital of the fourth selenium atom (other atomic orbitals symbol deduced by analogy). The unit is eV.

CuSbSe ₂ hopping integrals			
Orbitals	$Sb^{(4)}$ - p_z		
Se ⁽⁴⁾ -p _z	0.70		
Se ⁽⁴⁾ -p _y	-0.87		
$Cu^{(2)}-d_z^2$	-0.39		
Sb ⁽³⁾ -p _z	0.14		

Table S6. Orbital hopping integrals in the bilayer $CuBiS_2$, where $S^{(1)}-p_z$ indicates the p_z orbital of the first sulfur atom (other atomic orbitals symbol deduced by analogy). The unit is eV.

CuBiS ₂ hopping integrals			
Orbitals	Bi ⁽²⁾ -p _z		
S ⁽¹⁾ -p _z	0.71		
S ⁽¹⁾ -p _y	-0.89		
$Cu^{(4)}-d_z^2$	-0.43		
Bi ⁽¹⁾ -p _z	0.15		

Table S7. Orbital hopping integrals in the bilayer CuBiSe₂, where Se⁽¹⁾- p_z indicates the p_z orbital of the first selenium atom (other atomic orbitals symbol deduced by analogy). The unit is eV.

CuBiSe ₂ hopping integrals			
Orbitals	Bi ⁽²⁾ -p _z		
Se ⁽¹⁾ -p _z	0.69		
Se ⁽¹⁾ -p _y	-0.88		
$Cu^{(4)}-d_z^2$	-0.43		
Bi ⁽¹⁾ -p _z	0.11		

REFRENCES

- (1) J. Bardeen, W. Shockley. Physical Review, 1950, 80, 72-80.
- (2) J. Qiao, X. Kong, Z. X. Hu, F. Yang, W. Ji, Nat. Commun. 2014, 5, 4475.
- (3) S. Bruzzone, G. Fiori, Appl. Phys. Lett. 2011, 99, 222108.
- (4) R. Fei, A. Faghaninia, R. Soklaski, J. A. Yan, C. Lo, L. Yang, Nano Lett. 2014, 14, 6393 -6399.