SUPPORTING INFORMATION

DADNP: Dual Antibacterial Drug-Nanoparticle Systems Computational Design Approach

Karel Dieguez-Santana¹ and Humberto González-Díaz^{2,4,5,*}

¹Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain.

²Basque Center for Biophysics CSIC-UPVEH,

University of Basque Country UPV/EHU, 48940 Leioa, Spain.

³ IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Biscay, Spain.

Nanoparticles Dataset (NP-set).

We used a previously reported dataset with the outcomes of $N_n = 300$ pre-clinical assays of metal, metal salt, and metal oxide NPs against different bacteria species (s).¹ The metal NP have a core made of: gold (Au), silver (Ag), or copper (Cu). The metal salt NP cores are made of cadmium(II) sulfide (CdS) or copper(I) iodide. The metal oxide NP include: cadmium(II) oxide (CdO), zinc oxide (ZnO), copper(II) oxide (CuO), lanthanum(III) oxide (La₂O₃), aluminium oxide (Al₂O₃), iron(III) oxide (Fe₂O₃), tin(IV) oxide (SnO₂), titanium(IV) oxide (TiO₂), iron(II, III) oxide (Fe₃O₄), and silicon dioxide (SiO₂). These assays of these 15 nanomaterials involved multiple experimental conditions c_{nj} . We listed all the specific conditions of one assay as a vector $c_{nj} = [c_{nj}, c_{nj}, c_{nj}, ..., c_{nmax}]$. These conditions of assay include the measurement of 1 out of 4 possible Antimicrobial activity parameters, against 1 out of 34 possible bacteria species (different strains included). Other labels or experimental conditions considered are selecting at least 1 out of 3 NPs shape and running the experiment in 1 out of 4 possible intervals time during. The original data was downloaded from OCHEM database (<u>https://ochem.eu/home/show.do</u>)² and other sources.³⁻¹⁴ The dataset also included information about physicochemical parameters of the NP and the coating agents used (see next sections).¹

Shannon-entropy scaling of NP structural information.

The original NP-set contains different experimental/theoretical physicochemical parameter to characterize the NP structure/composition details. These parameters were the Average Molar Volume (AMV), the Average Atomic Electronegativity (AAE), and the Average Atomic Polarizability (AAP). These physicochemical properties were retrieved from the website Chemicool Periodic Table (<u>http://www.chemicool.com/elements</u>).¹⁵ The fourth parameter was the Average Particle Size (APS) expressed in nanometers (nm). However, in order to carry out the IF process making a fusion of the NP and AD on the same working dataset we decided to express all the information in the same scale. Consequently, the information of 2 datasets was transformed into a Shannon's entropy scale previously to fusion. The information about NP core and coating agents has been scaled using the following formulae to calculate the Shannon's entropy values.

$$p(D_{k}) = \frac{1}{(1 + Exp(-D_{k}/1000))} (1)$$

Sh(D_{k}) = -p(D_{k}) \cdot \log(p(D_{k})) (2)

The value of 1000 in the ratio $D_k/1000$ was used as a scaling value. The same kind of operators $Sh_k(D_k)$ were used to scale all up the descriptors quantifying the information about structure of different subsystems. It means that we applied the same operator $Sh_k(D_k)$ to the structural descriptors of the NP core (D_{kn}) . After that, we obtained the values of entropy $Sh_k(D_{kn})$, see **Table S1**. With the $Sh_k(D_{kn})$ values we can calculate the PTOs of the NP assays used as input for the PTMLIF model. The PTOs calculated here has the form of multi-condition MAs by analogy to previous reports. The formula of these PTOs is the following $\Delta Sh(D_{kn}) = Sh_{kn} - \langle Sh_{kn} \rangle_{cn}$. In **Table S1** we show selected examples of the average values $\langle Sh_{kn} \rangle_{cn}$ for different subsets of NP assay conditions c_n (Supporting Information file SI00.doc). The information about all the NPs, shape, type, and values of Sh_{kn} and $\langle Sh_{kn} \rangle_{cn}$ appear in the Supporting Information file SI01.xlsx, see NP sheet.

NP Type	NP	Shape	Sh(MW _n)	Sh(AMV _n)	Sh(AAE _n)	Sh(AAP _n)	Sh(APS _n)	
Oxide	ZnO	Acicular	0.1476	0.1501	0.1504	0.1504	0.1497	
	ZnO	N/A	0.1476	0.1501	0.1504	0.1504	0.1493	
	CuO	N/A	0.1477	0.1502	0.1504	0.1504	0.1493	
	La2O3	N/A	0.1371	0.1499	0.1504	0.1501	0.1493	
	A12O3	N/A	0.1468	0.1501	0.1504	0.1504	0.1493	
	Fe2O3	N/A	0.1445	0.1501	0.1504	0.1504	0.1493	
	SnO2 N/A 0.1449		0.15	0.15 0.1504		0.1493		
	TiO2	N/A	0.1477	0.1501	0.1504	0.1503	0.1493	
	SiO2	N/A	0.1484	0.1501	0.1504	0.1504	0.1493	
	CdO	Spherical	0.1458	0.1501	0.1504	0.1504	0.1498	
	Fe3O4	Spherical	0.1414	0.1501	0.1504	0.1504	0.1501	
Metal	CuI	N/A	0.1432	0.15	0.1504	0.1503	0.1502	
	CdS	Spherical	0.1452	0.15	0.1504	0.1503	0.1504	
	Au	Spherical	0.143	0.1502	0.1504	0.1503	0.1505	
	Ag	Spherical	0.1466	0.1502	0.1505	0.1503	0.1504	
	Cu	Spherical	0.1483	0.1503	0.1504	0.1503	0.1502	
NP	Org.	Strain	Shape		Averag	e Values		
Туре	cn ₁	cn ₂	cn ₃	<sh(amv<sub>n)_{enj}></sh(amv<sub>	<Sh(AAE _n) _{enj} $>$	<Sh(AAP _n) _{enj} $>$	<Sh(APS _n) _{cnj} $>$	
All	EC	K-12	Spherical	0.14647	0.15013	0.15044	0.15032	
	EC	MDR		0.14296	0.15017	0.15043	0.15031	
	EC	ATCC 10536		0.1471	0.1502	0.1505	0.1503	
	EF	VCM-R		0.1466	0.1502	0.1505	0.1503	

Table S1. NP Shannon entropy information measures and averages (selected examples)

 SA	ATCC 9144	Acicular	0.14763	0.15012	0.15043	0.15039
EC	ATCC 10536		0.14763	0.15012	0.15043	0.15039
PA	ATCC 9027		0.14763	0.15012	0.15043	0.15039

In **Table S2** we show the individual values of $Sh(D_{cak})$ and the average values $\langle Sh(D_{ack})_{cnj} \rangle$ for each descriptor D_{ack} of the coating agents. These MAs quantify the variability on the first coating agent, the second coating agent (if any), and the time of assay, respectively. However, the values of variance of these MAs were too low to be included in ML analysis. Consequently, we decided to encode all this information into a modified type of PTOs based on multiple Shannon's entropy information measures $\Delta Sh(D_{ca1}, D_{ca2}, D_{dk})$. The use of many different types of PTOs in PTMLIF analysis applied to Nanotechnology was discussed in the literature before.¹⁶⁻¹⁸

Table S2. Shannon's entropy information measures for NP coating agents

(Coating s	ystems	Coating systems numerical information						
N _{coat}	Poly.	Coating	Coating A	Agent 01	Coating Agent 02				
		System	Sh(LOGP _{ac1})	$Sh(PSA_{ac1})$	Sh(LOGP _{ac2})	$Sh(PSA_{ac2})$			
Double	Mono.	PDT/Mel	0.14776	0.15050	0.14627	0.15054			
		PDT/ACh	0.14776	0.14776 0.15050		0.15055			
		PDT/CQ	0.14776	0.15050	0.14956	0.15037			
		PDT/DMB	0.14776	0.15050	0.14734	0.15049			
		PDT/CPB	0.14776	0.15050	0.14700	0.15045			
		PDT/G	0.14776	0.15050	0.14783	0.15051			
Single		PDT	0.14776	0.15050	0.15051	0.15051			
		Maltose	0.14328	0.15065	0.15051	0.15051			
Lactose		0.14328	0.15065	0.15051	0.15051				
		Glutathione	0.14457	0.15058	0.15051	0.15051			
		Glucose	0.14652	0.15059	0.15051	0.15051			
		DMA	0.15051	0.15022	0.15051	0.15051			
		Galactose	0.14652	0.15059	0.15051	0.15051			
	Poly.	PVP	0.14983	0.15052	0.15051	0.15051			
		PGA	0.14690	0.15055	0.15051	0.15051			
None	None	None	0.15051	0.15051	0.15051	0.15051			
Nc	Poly.	Coating	Coating Agent 01		Coating Agent 02				
cc_1	cc_2	Type $\langle Sh(LOGP_{ac1})_{cni} \rangle$		<Sh(PSA _{ac1}) _{cnj} $>$	<Sh(LOGP _{ac2}) _{cnj} $>$	<Sh(PSA _{ac2}) _{cnj} $>$			
Double	Mono	Ι	0.148	0.150	0.148	0.150			
Single	Mono.	II	0.146	0.151	0.151	0.151			
Single	Poly.	III	0.148	0.151	0.151	0.151			
None None IV		0.151	0.151	0.151	0.151				

IFPTML DADNP simulation experiment. Last we used the IFPTML model to carry out a simulation of the values of probability of several DADNP. The study included $N_{AD} = 27$ compounds with AD activity; which are approved by FDA and/or demonstrated to be active in various assays. They belong to 10 classes of AD including cephalosporins (CEF), quinolones (QUIN), tetracyclines (TETR), macrolides (MACRO), etc. We also included in the study 72 assays of NP vs. different bacteria species including multiple MDR strains. We calculated the value of probability p(DADNP_{in}) with which the DADNP_{in} system formed by the ith AD_i and the nth NP_n is expected to has the desired level of biological activity on the assay conditions c_{dj} and c_{nj} . In order to make the calculation more exigent we determined the value of probability as p(DADNP_{in})_{cdj,cnj} $p(AD_i/c_{dj})_{obs} \cdot p(NP_n/c_{nj})_{obs} \cdot p(DADNP_in/c_{dj}, c_{nj})_{pred}$. The two first terms $p(AD_i/c_{dj})_{obs}$ and $p(NP_n/c_{nj})_{obs}$ are the observed probabilities with which multiple AD and the NP of reference have been found (experimentally observed) to show desired levels of activity under conditions \mathbf{c}_{dj} and \mathbf{c}_{nj} . The third term $p(DADNP_{in}/\mathbf{c}_{dj}, \mathbf{c}_{nj})_{pred}$ is the probability calculated by the IFPTML model for this putative DADNP_{in} under the same conditions \mathbf{c}_{dj} and \mathbf{c}_{nj} . The probability $p(DADNP_{in}/c_{dj}, c_{nj})_{pred} = 1/(1+Exp(-f(v_{ij}(c_{d0}), v_{nj}(c_{n0}))_{calc}))$ is a sigmoid function of the output $f(v_{ij}(c_{d0}), v_{nj}(c_{n0}))_{calc}$ of the IFPTML model for this DADNP on the specific assay conditions c_{dj} and c_{nj} . We carried out a total $N_{tot} = 1944$ calculations of the probability of success of the putative DADNP in the assays selected. The model identified some DADNP systems as promising for further assays. In total 760 out of this 1944 DADNP assays were predicted to be successful with $p(DADNP_{in})_{cdj,cnj} > 0.8$ (12.0%). Only the 1% of the DADNP calculated were predicted to be successful with p $p(DADNP_{in})_{cdj,cnj} > 0.9$. In Figure S1 we can see a selection of DADNP assays predicted. The DADNP systems formed by Ciprofloxacin and Au NP coated with PDT/CQ, PDT/Mel, or PDT/Ach seems to be promising for further assays vs. MDR P. aeruginosa strains. However, the DADNP systems formed by Ciprofloxacin and Au NP coated with PDT/DMB could be unable to halt the infection of the same strain. However, this is only a punctual example and all predictions made with this method should be taken with caution and corroborated experimentally. The great advantage of this IFPTML method is not the possibility of making a good prediction with a few tests. The real use of the IFPTML model is to make fast and inexpensive preliminary *in silico* screening of large numbers of DADNP systems. After that, we can short list the more promising DADNP systems for experimental assay taking into account not only p(DADNPin)edj,enj values but also expert opinion, similar cases from literature if any, etc. This could be a useful tool to direct the experimental search instead of doing it by costly and slow trial and error tests only.

	В	С	D	E	F	G	Н	1	J	K	L	М
5					CEF	IMIDAZOL	MACRO	PEN	QUIN	TETRA	TETRA	TRIAZ
6	cn1 = Organism	cn2 = Strain	NP	Coat	Ciprofloxacin	Metronidazole	Erythromycin	Pencillin V	Nalidic acid	Tetracycline	Minocycline	Voriconazole
7	Escherichia coli	ATCC25922	Ag	PVP	0.010	0.004	0.006	0.007	0.005	0.008	0.010	0.006
8	Escherichia coli	ATCC25922	Ag	Lactose	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9	Klebsiella pneumoniae	MDR	Au	PDT/CQ	0.809	0.338	0.594	0.616	0.472	0.676	0.796	0.515
10	Klebsiella pneumoniae	MDR	Au	PDT/CPB	0.853	0.356	0.636	0.651	0.499	0.712	0.837	0.543
11	Klebsiella pneumoniae	MDR	Au	PDT	0.651	0.272	0.489	0.497	0.381	0.543	0.638	0.414
12	Pseudomonas aeruginosa	ATCC27853	Au	PDT/CQ	0.853	0.356	0.636	0.651	0.499	0.712	0.837	0.543
13	Pseudomonas aeruginosa	ATCC27853	Au	PDT	0.809	0.338	0.594	0.615	0.472	0.676	0.796	0.515
14	Pseudomonas aeruginosa	ATCC27853	Au	PDT/ACh	0.835	0.348	0.619	0.636	0.488	0.697	0.820	0.531
15	Pseudomonas aeruginosa	MDR	Au	PDT/CQ	0.809	0.338	0.594	0.616	0.472	0.676	0.796	0.515
16	Pseudomonas aeruginosa	MDR	Au	PDT/G	0.316	0.132	0.199	0.234	0.177	0.267	0.321	0.201
17	Pseudomonas aeruginosa	MDR	Au	PDT/Mel	0.819	0.342	0.604	0.623	0.478	0.684	0.805	0.521
18	Pseudomonas aeruginosa	MDR	Au	PDT/DMB	0.260	0.108	0.161	0.192	0.145	0.220	0.265	0.165
19	Pseudomonas aeruginosa	MDR	Au	PDT	0.786	0.328	0.573	0.597	0.457	0.657	0.775	0.500
20	Pseudomonas aeruginosa	MDR	Au	PDT/ACh	0.838	0.350	0.622	0.638	0.490	0.700	0.823	0.533
21	Staphylococcus aureus	ATCC6538P	Au	PDT/Mel	0.647	0.270	0.483	0.494	0.379	0.540	0.635	0.412
22	Staphylococcus aureus	ATCC6538P	Au	PDT/CQ	0.437	0.183	0.329	0.334	0.256	0.365	0.428	0.278
23	Escherichia coli	ATCC8739	Fe3O4	PGA	0.586	0.244	0.400	0.441	0.336	0.493	0.586	0.373
24	Staphylococcus aureus	ATCC10832	Fe3O4	PGA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
25	Staphylococcus aureus	ATCC6538	SiO2	DMA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Figure S1. IFPTML-LDA DADNP systems simulation (selected results)

REFERENCES (Supporting Information)

- 1. Speck-Planche, A.; Kleandrova, V. V.; Luan, F.; Cordeiro, M. N., Computational modeling in nanomedicine: prediction of multiple antibacterial profiles of nanoparticles using a quantitative structureactivity relationship perturbation model. *Nanomedicine (Lond)* **2015**, 10, 193-204.
- Sushko, I.; Novotarskyi, S.; Korner, R.; Pandey, A. K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V. V.; Tanchuk, V. Y.; Todeschini, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gasteiger, J.; Schwab, C.; Baskin, II; Palyulin, V. A.; Radchenko, E. V.; Welsh, W. J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-de-Sousa, J.; Zhang, Q. Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachenko, V.; Tetko, I. V., Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J Comput Aided Mol Des 2011, 25, 533-54.
- 3. Ruparelia, J. P.; Chatterjee, A. K.; Duttagupta, S. P.; Mukherji, S., Strain specificity in antimicrobial activity of silver and copper nanoparticles. *Acta Biomater* **2008**, 4, 707-16.
- 4. Pramanik, A.; Laha, D.; Bhattacharya, D.; Pramanik, P.; Karmakar, P., A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. *Colloids Surf B Biointerfaces* **2012**, 96, 50-5.
- 5. Azam, A.; Ahmed, A. S.; Oves, M.; Khan, M. S.; Habib, S. S.; Memic, A., Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. *Int J Nanomedicine* **2012**, 7, 6003-9.

- 6. Azam, A.; Ahmed, A. S.; Oves, M.; Khan, M. S.; Memic, A., Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. *Int J Nanomedicine* **2012**, *7*, 3527-35.
- 7. Hossain, S. T.; Mukherjee, S. K., Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells. *J Hazard Mater* **2013**, 260, 1073-82.
- 8. Botequim, D.; Maia, J.; Lino, M. M.; Lopes, L. M.; Simoes, P. N.; Ilharco, L. M.; Ferreira, L., Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties. *Langmuir* 2012, 28, 7646-56.
- 9. Taglietti, A.; Diaz Fernandez, Y. A.; Amato, E.; Cucca, L.; Dacarro, G.; Grisoli, P.; Necchi, V.; Pallavicini, P.; Pasotti, L.; Patrini, M., Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria. *Langmuir* **2012**, 28, 8140-8.
- 10. Hossain, S. T.; Mukherjee, S. K., CdO nanoparticle toxicity on growth, morphology, and cell division in Escherichia coli. *Langmuir* **2012**, 28, 16614-22.
- 11. Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G., Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. *Nanomedicine* **2011**, 7, 184-92.
- 12. Inbaraj, B. S.; Kao, T. H.; Tsai, T. Y.; Chiu, C. P.; Kumar, R.; Chen, B. H., The synthesis and characterization of poly(gamma-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity. *Nanotechnology* **2011**, 22, 075101.
- 13. Hu, X.; Cook, S.; Wang, P.; Hwang, H. M., In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. *Sci Total Environ* **2009**, 407, 3070-2.
- 14. Zhao, Y.; Chen, Z.; Chen, Y.; Xu, J.; Li, J.; Jiang, X., Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. *J Am Chem Soc* **2013**, 135, 12940-3.
- 15. Hsu, D. D. Chemicool Periodic Table. http://www.chemicool.com/ (October 4, 2013),
- 16. Santana, R.; Zuluaga, R.; Ganan, P.; Arrasate, S.; Onieva, E.; Gonzalez-Diaz, H., Designing nanoparticle release systems for drug-vitamin cancer co-therapy with multiplicative perturbation-theory machine learning (PTML) models. *Nanoscale* **2019**, 11, 21811-21823.
- Santana, R.; Zuluaga, R.; Ganan, P.; Arrasate, S.; Onieva, E.; Gonzalez-Diaz, H., Predicting coatednanoparticle drug release systems with perturbation-theory machine learning (PTML) models. *Nanoscale* 2020, 12, 13471-13483.
- Santana, R.; Zuluaga, R.; Ganan, P.; Arrasate, S.; Onieva, E.; Montemore, M. M.; Gonzalez-Diaz, H., PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug-Vitamin Nanoparticle Release Systems for Cancer Cotherapy. *Mol Pharm* 2020, 17, 2612-2627.