## **Supporting Information**

Ultrasound Augments On-demand Breast Tumor Radiosensitization and Apoptosis Through a Tri-responsive Combinatorial Delivery Theranostic Platform

Prateek Bhardwaj<sup>†</sup>\*, Jayant Sastri Goda<sup>§</sup>, Venkatesh Pai<sup>§</sup>, Pradip Chaudhari<sup>‡</sup>, Bhabani Mohanty<sup>‡</sup>, Trupti Pai<sup>\u039</sup>, Komal Vishwakarma<sup>§</sup>, Rahul Thorat<sup>‡</sup>, Tabassum Wadasadawala<sup>§</sup>\*, Rinti Banerjee<sup>†</sup>\*¥

<sup>†</sup> Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India

<sup>§</sup> Department of Radiation Oncology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India

<sup>‡</sup> Animal house facility, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India

<sup>¥</sup>Deceased date: 8<sup>th</sup> July 2021

## \*Corresponding Authors

E-mail for correspondence: prateekbhardwaj26@gmail.com, twadasadawala@actrec.gov.in

## **EXPERIMENTAL SECTION**

*In vitro* biocompatibility. Briefly, 10<sup>4</sup> L929 cells per well were seeded in a 96-well plate. After 24 hours, cells were incubated with different dilutions of blank liposomes and nanobubbles for 72 hours followed by MTT assay. MTT at a concentration of 1 mg/ml was added to the wells for 4 hours. DMSO was added as a solubilizing agent to solubilize the purple formazan precipitate and absorbance was taken at 560 nm using ELISA Plate reader.

*In vitro* qualitative time dependent cellular internalization. Qualitative analysis of liposomal uptake over a period of time in MDAMB-231 cells was performed using confocal fluorescence microscopy. Briefly,  $5 \times 10^5$  cells/well were seeded in a 24-well plate. After 24 hours, cells were incubated with curcumin loaded liposomes at 100  $\mu$ M concentration for 1-4 hours. After incubation, cells were washed with chilled PBS thrice and fixed with 4% paraformaldehyde for 30 minutes. Cells were again washed with PBS and mounted on a glass slide using 50% glycerol for visualisation under confocal laser scanning microscope.

*In vitro* reactive oxygen species (ROS) generation. Briefly,  $5 \times 10^5$  MDAMB-231 cells per well were seeded in a 24-well plate. Cells were incubated with DCFH-DA at a final concentration of 100  $\mu$ M for 2 hours. Different drug loaded liposomes and respective nano-conjugates were incubated at an equivalent PTX concentration of 10  $\mu$ M for 12 hours. For ultrasound triggered groups, cells were simultaneously subjected with ultrasound of 2 W/cm<sup>2</sup>, 100% duty cycle for 30 seconds. Cells were washed twice with chilled PBS and trypsinized. Trypsinized cells were then centrifuged at 3000 rpm for 3 minutes and cell pellet was resuspended in PBS for analysis under FACS. **Orthotopic TNBC model development.** Ventral side of mice was shaved and an incision was made between 4<sup>th</sup> and 5<sup>th</sup> right nipple. Mammary fat pad was pulled out and  $5 \times 10^6$  MDAMB-231 cells per 70 µl of PBS was injected followed by resealing of incision with tissue adhesive. Developed tumor was confirmed using diagnostic ultrasound of 7-15 MHz.



## **FIGURES**

**Figure S1.** A) Comparative hydrodynamic diameter of blank and drug loaded liposomes distribution. B) Hydrodynamic diameter distribution of dual drug loaded liposomes (PTX-CUR-LP). Encapsulation efficiency of liposomes for different ratios of C) PTX and D) CUR. Data are represented as mean  $\pm$  SEM (n=3). \*\*p < 0.01.



Figure S2. Hydrodynamic diameter distribution of A) upper-most layer and B) middle layer nanobubbles.



Figure S3. Hydrodynamic diameter distribution of nano-conjugates.



**Figure S4.** Contrast-enhanced and B-mode ultrasonographs of nano-conjugates with inset showing their SEM image after a storage period of 1 week and 1 month at 4°C.



**Figure S5.** Biocompatibility of A) liposomes and B) nanobubbles on L929 mouse fibroblast cell line. Data are represented as mean  $\pm$  SEM (n=3).



**Figure S6.** A) Comparative IC50 of free curcumin (free CUR), free paclitaxel (free PTX), free paclitaxel and curcumin combination (free PTX+CUR), CUR loaded liposomes (CUR-LP), PTX loaded liposomes (PTX-LP), dual drug loaded liposomes (PTX-CUR-LP), CUR-LP conjugated with nanobubbles (CUR-LP-NB), PTX-LP conjugated with nanobubbles (PTX-CUR-LP-NB), PTX-CUR-LP conjugated with nanobubbles (PTX-CUR-LP-NB) in the presence of ultrasound on MCF-7 cells. B) Quantification of internalized PTX and CUR upon time dependent incubation of PTX-CUR-LP with MCF-7 cells. Data are represented as mean  $\pm$  SEM (n=3). \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001.



**Figure S7.** Confocal laser scanning microscopic images of MDAMB-231 cells upon incubation with curcumin loaded liposomes at different time points (Error bars: 50 μm).



**Figure S8.** Effect of ultrasound triggered formulation on the generation of reactive oxygen species in MDAMB-231 cells. Data are represented as mean  $\pm$  SEM (n=3). \*\*p < 0.01, \*\*\*p < 0.001.



Figure S9. Development of orthotopic triple negative breast cancer xenograft model in NOD-SCID mice.

| Formulation        | IC50 on MDAMB-231           | IC50 on MCF-7              |
|--------------------|-----------------------------|----------------------------|
| Free CUR           | $42.2 \ \mu M \pm 3.7$      | $38.1~\mu M \pm 1.5$       |
| Free PTX           | $16.4 \ \mu M \pm 1.1$      | $13.0\ \mu M \pm 1.0$      |
| Free PTX+CUR       | $5.1~\mu M \pm 0.9$         | $4.7~\mu M\pm0.9$          |
| CUR-LP             | $3.4~\mu M\pm0.6$           | $1.4~\mu M \pm 0.11$       |
| PTX-LP             | 521.1 nM ± 115.0            | $76.7 \text{ nM} \pm 10.1$ |
| PTX-CUR-LP         | $134.9 \text{ nM} \pm 34.0$ | 16.3 nM ± 2.9              |
| CUR-LP-NB + US     | $1.4 \ \mu M \pm 0.3$       | 540 nM $\pm$ 130.1         |
| PTX-LP-NB + US     | $156.9 \text{ nM} \pm 42.4$ | $33.7 \text{ nM} \pm 5.9$  |
| PTX-CUR-LP-NB + US | $32.2 \text{ nM} \pm 6.7$   | $2.4 \text{ nM} \pm 0.84$  |

Table 1. IC50 of different formulations on MDAMB-231 and MCF-7 cells. Values are represented as mean  $\pm$  SEM.

**Table 2.** Fold reduction in the <sup>18</sup>F-FDG uptake in mice treated with dual drug loaded liposomes (PTX-CUR-LP) in comparison to untreated control, Taxol<sup>®</sup>, and single drug loaded control formulations.

| PTX-CUR-LP                  | Fold reduction<br>w.r.t<br>Control | Fold reduction<br>w.r.t<br>Taxol® | Fold reduction<br>w.r.t<br>CUR-LP | Fold reduction<br>w.r.t<br>PTX-LP |
|-----------------------------|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| PET <sup>18</sup> F-FDG SUV | 12.89                              | 5.81                              | 10.65                             | 3.73                              |
| CT volume                   | 6.44                               | 2.15                              | 4.87                              | 2.20                              |

**Table 3.** Fold reduction in the <sup>18</sup>F-FDG uptake in mice treated with dual drug loaded nano-conjugates in the presence of ultrasound (PTX-CUR-LP-NB + US) in comparison to untreated control, Taxol<sup>®</sup>, and non-triggered control.

| PTX-CUR-LP-NB + US          | Fold reduction<br>w.r.t<br>Control | Fold reduction<br>w.r.t<br>Taxol <sup>®</sup> | Fold reduction<br>w.r.t<br>PTX-CUR-LP |
|-----------------------------|------------------------------------|-----------------------------------------------|---------------------------------------|
| PET <sup>18</sup> F-FDG SUV | 34.75                              | 15.68                                         | 2.69                                  |
| CT volume                   | 22.11                              | 7.40                                          | 3.42                                  |

**Table 4.** Fold reduction in the <sup>18</sup>F-FDG uptake in mice treated with dual drug loaded nano-conjugates in the presence of ultrasound and radiation (PTX-CUR-LP-NB + US + R) in comparison to untreated control, Taxol<sup>®</sup>, and radiotherapy treated clinical controls.

| PTX-CUR-LP-NB + US + R      | Fold reduction | Fold reduction | Fold reduction |
|-----------------------------|----------------|----------------|----------------|
|                             | w.r.t          | w.r.t          | w.r.t          |
|                             | Control        | Taxol®         | Radiation      |
| PET <sup>18</sup> F-FDG SUV | 59.50          | 26.72          | 15.19          |

**Table 5.** Scoring of lungs, liver, and spleen of mice treated with different formulations for observed histopathological changes by clinical pathologist. Scoring system: 0 (0%), 1 (0-25%, mild), 2 (25-50%, moderate), 3 (50-75%, high) and 4 (75-100%, very high).

|                           | Inflammation  |               | Necrosis      | Metastasis | Morphological<br>changes |           |
|---------------------------|---------------|---------------|---------------|------------|--------------------------|-----------|
|                           | Lungs<br>(Lu) | Liver<br>(Li) | Spleen<br>(S) | Lu, Li, S  | Lu, Li, S                | Lu, Li, S |
| Control                   | 0             | 1             | 2             | 0          | 0                        | 0         |
| Taxol®                    | 1             | 1             | 2             | 0          | 0                        | 0         |
| Radiation                 | 0             | 0             | 2             | 0          | 0                        | 0         |
| PTX-CUR-LP-NB +<br>US     | 0             | 1             | 2             | 0          | 0                        | 0         |
| PTX-CUR-LP-NB +<br>US + R | 1             | 0             | 2             | 0          | 0                        | 0         |