Supplementary Information for

Title: Layer-dependent interface reconstruction and strain modulation in twisted WSe_{2} Authors: Xiangbin Cai ${ }^{1 \#}$, Liheng $A n^{1 \#}$, Xuemeng Feng ${ }^{1 \#}$, Shi Wang ${ }^{1}$, Zishu Zhou ${ }^{1}$, Yong Chen ${ }^{1}$, Yuan Cai ${ }^{1}$, Chun Cheng ${ }^{2}$, Xiaoqing Pan ${ }^{3}$, Ning Wang ${ }^{1 *}$
${ }^{1}$ Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Hong Kong, China.
${ }^{2}$ Department of Materials Science and Engineering, The Southern University of Science and Technology, Shenzhen 518055, China.
${ }^{3}$ Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA.
\#These authors contributed equally to this work.
*Correspondence to phwang @ust.hk

Contents:

Figure S1: Processing details of geometric phase analysis (GPA).
Figure S2: Process flow to fabricate the twisted WSe_{2} field-effect transistors (FETs).

Figure S1: Processing details of geometric phase analysis (GPA). (a) The real-space image of 0.6°-twisted $2 \mathrm{~L} / 2 \mathrm{~L} \mathrm{WSe}_{2}$ with the inset of an enlarged area to demonstrate the reliable atomic resolution achieved by adequate sampling pixels ($4 \mathrm{kx} \mathrm{4kx} 0.2 \AA$ per pixel). (b) The corresponding power spectrum (zoomed in for clarity) of (a) showing the reflection spots used to extract strain components as marked by red circles. Since the twist angle is small and the interface reconstruction dominates, the Bragg spots from top and bottom WSe_{2} cannot be distinguished apart. The reciprocal aperture size was set for a $2-\mathrm{nm}$ real-space resolution and the central region of relaxed domains was chosen as the reference lattice.

Figure S2: Process flow to fabricate the twisted WSe_{2} field-effect transistors (FETs). (a) The $5 / 20 \mathrm{~nm} \mathrm{Cr} / \mathrm{Pt}$ electrodes in a Hall-bar configuration were deposited on a $\sim 20 \mathrm{~nm}$ BN flake and stored in the glove box for use. (b) Single-crystalline WSe_{2} bilayers were mechanically exfoliated onto $300 \mathrm{~nm}-\mathrm{SiO}_{2} / \mathrm{Si}$ substrates and identified by the optical contrast. The surface cleanness and thickness of selected flakes were confirmed by the atomic force microscopy (AFM). (c) $\sim 40 \mathrm{~nm}$ BN flakes were mechanically exfoliated onto substrates and picked up using a polycarbonate (PC) coated polydimethylsiloxane (PDMS) stamp. The same 'tear-and-stack' manner as adopted in preparing TEM samples was used to tear up half of the crystal and stack onto the other part after twisting by an angle. (d) The twisted-WSe $2 / \mathrm{BN}$ heterostructure was then dropped down onto the bottom electrodes in (a). (e) The device was annealed at $250^{\circ} \mathrm{C}$ in the Ar protecting gas flow for 6 hours to improve the contact between electrodes and WSe_{2}. The stacked van der Waals interfaces were fully relaxed during this process. (f) Finally, a top gate was defined by e-beam lithography and deposited as $5 / 60 \mathrm{~nm} \mathrm{Ti} / \mathrm{Au}$.

