Supporting information for

Vertically Stacked Bi₂Se₃/MoTe₂ Heterostructure with Large Band Offsets for Nanoelectronics

Lin Tao^{1,2}, Bin Yao^{1,2*}, Qian Yue³, Zhiying, Dan³, Peiting Wen³, Mengmeng Yang⁴,

Zhaoqiang Zheng⁴, Dongxiang Luo³, Weijun Fan⁵, Xiaozhou Wang^{3*}, Wei Gao^{3*}

¹ State Key Lab of Superhard Material, and College of Physics, Jilin University,

Changchun 130012, P. R. China

² Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of

Education), College of Physics, Jilin University, Changchun, 130012, P. R. China

³ Institute of Semiconductors, South China Normal University, Guangzhou 510631, P.

R. China

⁴ School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China.

⁵ School of Electrical and Electronic Engineering, Nanyang Technological University,639798, Singapore.

*Corresponding authors: Bin Yao, Email: binyao@jlu.edu.cn Xiaozhou Wang, Email: wxzanu@outlook.com Wei Gao, Email: gaowei317040@126.com

Fig. S1 Bi₂Se₃ nanosheets prepared by the Au-assisted exfoliation method. a Optical image of the Bi₂Se₃ nanosheets on Ti/Au SiO₂/Si substrate. **b** the 2D topological AFM image of Bi₂Se₃ nanosheets on Ti/Au SiO₂/Si substrate. **c** the corresponding 3D topological AFM image from **b**. **d** the height profiles along the yellow, blue and pink lines from **b**.

Fig. S2 HRTEM-EDS mapping analysis of the Bi_2Se_3/Au nanosheets. a Low-magnification TEM image of the exfoliated and as-transferred Bi_2Se_3 nanosheets with Au particle. b Element mapping of the two detected elements: Bi and c Se. d EDS spectrum extracted from the light blue rectangle in **a**.

Fig. S3 SAED patterns of (a) individual MoTe2 nanosheets and (b) individual Bi2Se3 nanosheets

Fig. S4 Electrical performance of another ultrathin Bi_2Se_3 FET. a. I_{ds} - V_{ds} curve. b. Output curves at various gate voltages. c. Tranfer characteristic at $V_{ds} = 0.1$ V scanning from -60 V to 60 V

Fig. S5 Transfer curve of the heterojunction device I at $V_{ds} = 1 V$

Fig. S6 Output curves of the heterojunction device I at various gate voltages

Fig. S7 Transfer curve of $MoTe_2$ FET in device I at V_g scanning from -40 V to 60 V. The threshold voltage (V_{th}) can be extracted from the intersection point between redfitting curve and the horizontal line.

Fig. S8 Electrical properties of another two $MoTe_2/Bi_2Se_3$ heterostructure devices. (a) OM image of Device II, (b) the corresponding I_{ds} - V_{ds} curve at linear form, Inset is the logarithmic scale. (c) OM image of Device III, (d) the corresponding I_{ds} - V_{ds} curve at linear scale, Inset is the logarithmic scale.

Fig. S9 (a) Topological AFM image of $Bi_2Se_3/MoTe_2$ in device VI. (b) the corresponding height profile along the cambridge blue and violet line, respectively.

Fig. S10 Electrical properties of another MoTe₂/thinner Bi₂Se₃ heterostructure devices. (a) OM image of Device IV. The scale bar is 10 μ m. Inset is the OM image of the chosen Bi₂Se₃ nanosheets. (b)I_{ds}-V_{ds} curve at linear scale. Inset is the semi-logarithmic scale. (c) Transfer curves at V_{ds} = -3 V/3 V, (d) Output curve at linear scale from V_g = -80 to 80 V. (e)rectification ratio (I_f/I_b) at the same V_{ds} with the increment of V_{ds}. (f) Fowler-Nordheim plot for backward current. Noticement: Bi₂Se₃ is Drain terminal and 2H-MoTe is Source terminal.

Fig. S11 Electrical properties of individual MoTe₂ and Bi₂Se₃ at V_{ds} = 0.38 V in device I. I_{ds} -

 V_{ds} curves for (a) MoTe₂ and (c) Bi₂Se₃; Transfer characteristics for (b) MoTe₂ and (d) Bi₂Se₃.

Fig. S12 The fitting relationship of the logarithmic plots between photocurrent and light power density under (a) 405 nm, (b) 635 nm and (c) 1310 nm illumination.

Fig. S13 Time trace of I_{ds} at $V_{ds} = 0$ V under (a) 635 nm, (b) 1310 nm illumination.

Fig. S14 Time trace of I_{ds} at $V_{ds} = 0$ V under 1550 nm illumination.

Fig. S15 The cooresponding rise and decay time of the device I at $V_{ds} = 0$ V under a. 635 nm (P = 120 mW/cm²). b. 808 nm (P = 146 mW/cm²). c. 1310 nm (P = 350 mW/cm²) and d. 1550 nm (P = 550 mW/cm²) illuminations.

Fig. S16 3D schematic image of our novel exfoliation and transfer process for Bi₂Se₃ nanosheets.

Fig. S17 Optical images of the Au-assisted exfoliation and transfer process: (a) large-scale Bi_2Se_3 samples on Au/Ti/SiO₂/Si substrate; (b) large-scale Bi_2Se_3 samples on PVA/PDMS film; (c) large-scale Bi_2Se_3 samples on final SiO₂/Si substrate.

Fig. S18 Ultra-large Bi_2Se_3 nanosheets on Au/Ti/SiO₂/Si substrate at (a) 10 X and 50 X amplification.

Fig. S19 Another ultra-large Bi_2Se_3 nanosheets on Au/Ti/SiO₂/Si substrate at 20 X amplification.