Trans/Cis-Stereoisomers of Triterpenoid-Substituted Tetraphenylethene: Aggregation-Induced Emission, Aggregate Morphology and Mechano-chromism

Xia Yu,^a Yuzhang Meng,^a Hao Zhang,^a Junbo Guo,^a Shixian Wang,^a Hui Li,^a Jun Hu,^{*a} and Min-Hui Li^{*a,b}

^a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Email: jhu@mail.buct.edu.cn

^b Chimie ParisTech, PSL University, CNRS, Institut de Recherche de chimie, Paris 75005, France Email: min-hui.li@chimieparistech.psl.eu

Contents

1. Synthesis and Characterization of <i>Trans-/Cis</i> -TPE-2GA Isomers	S2
1.1 Synthesis of GACO ₂ MeS2	
1.2 Synthesis of TPE-20Me	
1.3 Synthesis of TPE-2OHS3	
1.4 Synthesis of TPE-2CO ₂ MeS3	
1.5 Synthesis of <i>Trans-/Cis</i> -TPE-2CO ₂ HS3	
1.6 Spatial Arrangements and Single Crystal Data	
1.7 ¹ H NMR and ¹³ C NMR of TPE-2GA and Intermediate CompoundsS6	
1.8 HRMS of TPE-2GA Isomers	
1.9 FT-IR of TPE-2GA IsomersS15	
1.10 ¹ H NMR of TPE-2GA Isomers after HeatingS15	
1.11 ¹ H NMR of TPE-2GA Isomers after Photoisomerization in Solid StateS16	
2. AIE Properties and Aggregates Morphologies	S16
2.1 UV-vis Spectra of TPE-2GA Isomer	
2.2 Statistics of Emission Peak and CIE Spectra of TPE-2GA IsomerS17	
2.3 TEM Images of Trans- and Cis-TPE-2GAS17	
2.4 Statistical Results the Aggregates of Trans- and Cis-TPE-2GAS18	
2.5 Schematic of Cis-TPE-2GA Molecular Organization in Ribbon-like AggregateS18	
3. Mechanochromic Properties of Trans- and Cis-TPE-2GA in Solid States	S19
References	S19

1. Synthesis and Characterization of Trans-/Cis-TPE-2GA Isomers

Scheme S1. Synthetic route of trans-/cis-TPE-2GA.

1.1 Synthesis of GACO₂Me.

GACO₂Me was synthesized according to literature.¹ Yield: 90%. ¹H NMR (400 MHz, CDCl₃): δ = 5.66 (s, 1H, 12-CH=C), 3.68 (s, 3H, OCH₃), 3.24-3.20 (m, 1H, 3-CH-O), 1.36, 1.14, 1.13, 1.12, 1.00, 0.80 (s, 7 × 3H, 7 × CH₃). ¹³C NMR (100 MHz, CDCl₃): δ =200.4, 177.1, 169.3, 128.7, 78.9, 62.0, 55.1, 51.9, 48.5, 45.5, 44.2, 43.3, 41.3, 39.3, 37.9, 37.2, 32.9, 32.0, 31.3, 28.7, 28.5, 28.2, 27.5, 26.6, 23.5, 18.8, 17.6, 16.5, 15.7.

1.2 Synthesis of TPE-2OMe.

TPE-2OMe was synthesized according to literature.² Yield: 59%.¹H NMR (400 MHz, CDCl₃): δ = 7.14-7.00 (m, 10H, Ar*H*), 6.96-6.90 (m, 4H, Ar*H*), 6.67-6.61 (m, 4H, Ar*H*), 3.75-3.73 (ss, 6H, OC*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ =158.1, 144.4, 139.8, 136.5, 132.7, 131.5, 127.8, 126.3, 113.1, 55.2.

1.3 Synthesis of TPE-2OH.

TPE-2OH was synthesized according to literature.^{2,3} Yield: 93%.¹H NMR (400 MHz, CDCl₃): δ = 7.14-6.99 (m, 10H, Ar*H*), 6.91-6.86 (m, 4H, Ar*H*), 6.59-6.54 (m, 4H, Ar*H*), 4.58-4.55 (ss, 2H, O*H*); ¹³C NMR (100 MHz, CDCl₃): δ = 154.0, 144.3, 144.2, 139.8, 136.8, 136.7, 132.9, 131.5, 127.8, 127.7, 126.4, 114.8, 114.7.

1.4 Synthesis of TPE-2CO₂Me.

Methyl 6-bromohexanoate (3.0 mL, 19.1 mmol) was added into an acetonitrile solution of TPE-2OH (2g, 5.4 mmol) and K₂CO₃ (2.67 g, 19.1 mmol), and then the mixture was stirred at 80 °C for 24 h. After that, the reaction solution was filtered and the filtrate was evaporated under reduced pressure to remove the organic solvents. The obtained crude product was purified by column chromatography (PE: EA: DCM =20/1/5) to give TPE-2CO₂Me. Yeild: 75%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.16-7.04 (m, 6H, Ar*H*), 6.98-6.92 (m, 4H, Ar*H*), 6.86-6.80 (m, 4H, Ar*H*), 6.69-6.63 (m, 4H, Ar*H*), 3.87-3.82 (m, 4H, OC*H*₂), 3.57 (s, 6H, COOC*H*₃), 2.33-2.28 (dt, 4H, C*H*₂COO), 1.69-1.63 (m, 4H, C*H*₂), 1.58-1.52 (m, 4H, C*H*₂), 1.42-1.33 (m, 4H, C*H*₂); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 173.3, 157.0, 143.8, 139.3, 135.5, 131.9, 130.7, 127.7, 126.2, 113.6, 67.1, 51.2, 33.2, 28.4, 25.1, 24.2.

1.5 Synthesis of *Trans-/Cis*-TPE-2CO₂H.

TPE-2CO₂Me (500 mg, 0.81 mmol) and LiOH (290 mg, 12.09 mmol) were added into a mixed solvent of THF/H₂O (5:1, v/v) and stirred at room temperature for 12 h. After removing THF under reduced pressure, 1M HCl was added to adjust the pH to 1, and then dichloromethane was used to extract the product three times, followed by drying with anhydrous Na₂SO₄. After that, the Na₂SO₄ was filtered and the organic phase was concentrated. The crude was purified by column chromatography (PE: EA: DCM =2/2/1) to give *cis*-TPE-2CO₂H ($R_f = 0.30$) and *trans*-TPE-2CO₂H ($R_f = 0.42$), respectively.

Trans-TPE-2CO₂H: ¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.98 (s, 2H, COO*H*), 7.16-7.07 (m, 6H, Ar*H*), 6.97-6.96 (d, 4H, *J* = 4.00 Hz, Ar*H*), 6.82-6.80 (d, 4H, *J* = 8.00 Hz, Ar*H*), 6.66-6.64 (d, 4H, *J* = 8.00 Hz, Ar*H*), 3.86-3.83 (t, 4H, *J*₁ = 8.00 Hz, *J*₂ = 4.00 Hz, OC*H*₂), 2.22-2.19 (t, 4H, *J*₁ = 4.00 Hz, *J*₂ = 8.00 Hz, C*H*₂COOH), 1.68-1.61 (m, 4H, C*H*₂), 1.56-1.49 (m, 4H, C*H*₂), 1.41-1.33 (m, 4H, C*H*₂); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 174.4, 157.0, 143.8, 139.3, 135.5, 131.9, 130.7, 127.8, 126.3, 113.6, 67.1, 33.6, 28.5, 25.2, 24.3.

Cis-**TPE-2CO**₂**H**: ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 11.99$ (s, 2H, COO*H*), 7.12-7.04 (m, 6H, Ar*H*), 6.94-6.92 (d, 4H, *J* = 8.00 Hz, Ar*H*), 6.86-6.84 (d, 4H, *J* = 8.00 Hz, Ar*H*), 6.70-6.68 (d, 4H, *J* = 8.00 Hz, Ar*H*), 3.88-3.85 (t, 4H, *J*₁ = 4.00 Hz, *J*₂ = 8.00 Hz, OC*H*₂), 2.23-2.19 (t, 4H, *J*₁ = 8.00 Hz, *J*₂ = 8.00 Hz, C*H*₂COOH), 1.70-1.63 (m, 4H, C*H*₂), 1.57-1.50 (m, 4H, C*H*₂), 1.42-1.35 (m, 4H, C*H*₂); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 174.4, 157.1, 143.8, 139.2, 135.6, 131.9, 130.7, 127.7, 126.2, 113.7, 67.1, 33.6, 28.5, 25.2, 24.3.$

1. cis-TPE-2CO₂H, R_f = 0.30 2. cis/trans-TPE-2CO₂H 3. trans-TPE-2CO₂H, R_f = 0.42

Figure S1. Digital photos of TLC plates under UV light at 254 and 365 nm, respectively. The eluent was consisted of petroleum ether, ethyl acetate and dichloromethane (2/2/1, volume ratio).

1.6 Spatial Arrangements and Single Crystal Data.

Figure S2. Spatial arrangements of *trans*-TPE-2CO₂H along direction a, b and c in single crystal.

Bond precision	C-C = 0.0024 Å, Wavelength = 1.54184		
Cell	a = 9.3338 (1), b = 13.3779 (2), c = 16.4362 (2)		
	alpha = 79.162 (1), beta = 86.863 (1), gamma = 79.577 (1)		
Temperature	180 K		
	Calculated	Reported	
Volume	1982.01 (4)	1982.01 (4)	
Space group	PĪ	PĪ	
Hall group	$\overline{P}1$	$\overline{P}1$	
Moiety formula	C ₃₈ H ₄₀ O ₆ , 2(C2 H6 O S)		
Sum formula	$C_{42}H_{52}O_8S_2$	$C_{42}H_{52}O_8S_2$	
Mr	748.96	748.95	
Dx, g cm ⁻³	1.255	1.255	
Z	2	2	
Mu (mm ⁻¹)	1.633	1.633	
F000	800.0	800.0	
F000'	803.57		
h, k, lmax	11, 16, 20	11, 16, 20	
Nref	8189	7879	
Tmin, Tmax	0.855, 0.907	0.730, 1.000	
Tmin'	0.698		
Correction method = # Reported T Limits : Tmin =0.730 Tmax =1.000			
AbsCorr =MULTI-SCAN			
Data completeness	0.962		
Theta (max)	75.240		
R (reflections)	0.0462 (7047)		
wR2 (reflecions)	0.1335 (7879)		
S	1.057		
Npar	506		

Table S1. Crystal data and structure refinement for *trans*-TPE-2CO₂H

Figure S4. ¹³C NMR spectrum of GACO₂Me in CDCl₃ (100 MHz).

-1.54

Figure S5. ¹H NMR spectrum of *trans-/cis*-TPE-2OMe in CDCl₃ (400 MHz).

Figure S6. ¹³C NMR spectrum of *trans-/cis*-TPE-2OMe in CDCl₃ (100 MHz).

-1.56

Figure S7. ¹H NMR spectrum of *trans-/cis*-TPE-2OH in CDCl₃ (400 MHz).

Figure S8. ¹³C NMR spectrum of *trans-/cis*-TPE-2OH in CDCl₃ (100 MHz).

Figure S10. ¹³C NMR spectrum of *trans-/cis*-TPE-2CO₂Me in DMSO-*d*₆ (100 MHz).

Figure S12. ¹³C NMR spectrum of *trans*-TPE-2CO₂H in DMSO-*d*₆ (100 MHz).

Figure S14. ¹³C NMR spectrum of *cis*-TPE-2CO₂H in DMSO-*d*₆ (100 MHz).

Figure S16. ¹³C NMR spectrum of *trans*-TPE-2GA in CD₂Cl₂ (100 MHz).

Figure S18. ¹³C NMR spectrum of *cis*-TPE-2GA in CD₂Cl₂ (100 MHz).

1.8 HRMS of TPE-2GA Isomers

Figure S20. ESI-HRMS (+) spectrum of *cis*-TPE-2GA.

1.9 FT-IR of TPE-2GA Isomers

Figure S21. FT-IR spectra of trans- and cis-TPE-2GA.

1.10 ¹H NMR of TPE-2GA Isomers after Heating

Figure S22. Partial ¹H NMR spectra of (A) *trans*-TPE-2GA and (B) *cis*-TPE-2GA in DMSO- d_6 (400 MHz) after heating at different temperatures for 30 min. The abscissas of all NMR spectra are scaled from 6.3 to 7.2 ppm for clarity.

1.11 ¹H NMR of TPE-2GA Isomers after Photoisomerization in Solid State

Figure S23. Partial ¹H NMR spectra (400 MHz) of (A) *trans*-TPE-2GA and (B) *cis*-TPE-2GA in solid state upon UV irradiation at 365 nm (1.6 mW/cm²) for 30 min at room temperature. The abscissas of all NMR spectra are scaled from 6.5 to 7.2 ppm for clarity. Insert in (A, B) corresponded to photographs of samples before and after UV irradiation. The solvent is acetone- d_6

2. AIE Properties and Aggregates Morphologies

2.1 UV-vis Spectra of TPE-2GA Isomer

Figure S24. UV-vis spectra of (A) *trans*-TPE-2GA and (B) *cis*-TPE-2GA in water/acetone mixtures with different water fractions, concentration = 10^{-5} M.

2.2 Statistics of Emission Peak and CIE Spectra of TPE-2GA Isomer

Figure S25. (A) The maximum emission wavelength of *cis*-TPE-2GA with different water fractions, and (B) its corresponding CIE spectrum. (C) The maximum emission wavelength of *trans*-TPE-2GA with different water fractions, and (D) its corresponding CIE spectrum. Inset: partial enlarged view, concentration = 10^{-5} M.

2.3 TEM Images of Trans- and Cis-TPE-2GA

Figure S26. TEM images of *cis*-TPE-2GA in water/acetone at (A, B, C) $f_w = 60\%$ and (D) $f_w = 80\%$. TEM images of *trans*-TPE-2GA in water/acetone at (E) $f_w = 60\%$ and (F) $f_w = 80\%$.

2.4 Statistical Results the Aggregates of Trans- and Cis-TPE-2GA

Figure S27. Statistical results (A) of the diameters of nanospheres of *trans*-TPE-2GA and (B) of wall thickness of nanotubes of *cis*-TPE-2GA in the water/acetone mixture with $f_w = 60\%$. Analyses were made for SEM images.

2.5 Schematic of Cis-TPE-2GA Molecular Organization in Ribbon-like Aggregate

Figure S28. Packing models of ribbons formed by *cis*-TPE-2GA. The red disk represents the TPE moiety, the blue line represents the aliphatic spacer, and the ellipsoid represents the GA skeleton

3. Mechano-chromic Properties of Trans- and Cis-TPE-2GA in Solid States

Figure S29. Time-resolved emission decay curves of *cis*-TPE-2GA in (A) pristine and (B) ground states; and *trans*-TPE-2GA in (C) pristine and (D) ground states.

References

- 1. Gao, Y.; Hao, J.; Wu, J.; Zhang, X.; Hu, J.; Ju, Y. Supramolecular Helical Nanofibers Assembled from a Pyridinium-Functionalized Methyl Glycyrrhetate Amphiphile. *Nanoscale* **2015**, *7*, 13568-13575.
- Xu, L.; Jiang, L.; Drechsler, M.; Sun, Y.; Liu, Z.; Huang, J.; Tang, B. Z.; Li, Z.; Stuart, M. A. C.; Yan, Y. Self-Assembly of Ultralong Polyion Nanoladders Facilitated by Ionic Recognition and Molecular Stiffness. *J. Am. Chem. Soc.* 2014, *136*, 1942-1947.
- 3. Yu, X.; Chen, H.; Shi, X.; Albouy, P.-A.; Guo, J.; Hu, J.; Li, M.-H. Liquid Crystal Gelators with Photo-Responsive and AIE Properties. *Mater. Chem. Front.* 2018, *2*, 2245-2253.