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Figure S1. Characterization of GO. Molecular structure (a), TEM image (b), size distribution (c),
XPS survey (d), C1s spectrum (e), AFM image (f) and thickness distribution (0.4 nm —29.4 nm) (Q).
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Figure S2. Characterization of GONH2. Molecular structure (a), TEM image (b), XPS survey (c),
C1s spectrum (d), AFM image (e) and thickness distribution (0.4 nm — 32.4 nm) (f). TGA (g) and
zeta potential in water (h). The values of zeta potential are indicative of a good colloidal stability.
Although the value of zeta potential should increase after the reaction with TEG, the positive charge
associated to the amines is likely neutralized by the new hydroxyl groups generated by the epoxide
ring opening reaction. The lower value might be also due to the different dispersibility of the two
materials.
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Figure S3. Stability of GO and GONHz: in cell culture media. Optical image of GO and GONH>
(50 pg/mL) in cell culture media at time zero and after incubation of 2 h and overnight.
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Figure S4. Cell viability assays on human peripheral blood mononuclear cells (PBMCs) treated
with GO or GONHz2. Purified PBMCs were incubated with GO or GONH> for 24 h or left untreated
(Ctrl). Ethanol was used a positive control. Percentage of late apoptotic and necrotic cells was
assessed by staining with an amine-reactive dye (7AAD) after incubation with 5, 25, and 50 ug/mL).
All experiments were performed in triplicate and shown as means +SD. *p<0.05; by one-way
ANOVA with Bonferroni post tests and Tukey's multiple comparisons test.
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Figure S5. Genomic toxicity evaluation. PBMCs were incubated with 5, 25 or 50 pug/mL of GO or
GONH_ for 24 h, or left untreated (Ctrl), and the impact on genotoxicity was evaluated on human
PBMCs (a). Real time gPCR analysis of Bcl2, Caspasel, and Bax expression normalized to Gapdh
expression and untreated control applying the delta delta Ct method. (b) Cell pellets were used in
DNA fragmentation assay. Samples were run on agarose gel electrophoresis. (c) Treated cells were
stained with H2AX antibody to determine the levels of H2AX activation in response to DNA damage.
Stained cells (10.000 counts) were run on flow cytometer (BD Accuri). Data are presented as mean
+ ST.D. of three independent experiments. ***p<0.001
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Figure S6. Classical monocytes response to GO or GONH: incubation. (a) Representative
immune cell composition analysis with sunburst after treatment with GO or GONHo>. (b) Single-cell
characterization of gated CD14+ classical monocytes after GO or GONH-treatment (ViSNE
analysis). Plots show the use of ViSNE to obtain a comprehensive single-cell view of 6 cytokines
expression. (c) Representative heat map and bar graph of median expression intensity of IL5, IL4,
IL6, IL2, IFNg, TNF, and MIP1b on classical monocytes. All experiments were performed in
triplicate and shown as means £SD. Statistical differences: *p<0.05; **p<0.01; ***p<0.001 (One-
way ANOVA with Bonferroni’s post tests and Tukey's multiple comparisons test).
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Figure S7. GO and GONHz-induced GrB expression and secretion in B cell activation assays.
a) GZMB expression after treatment with GO or GONH: at fixed concentration (50 pg/mL) or left
untreated (Ctrl) determined by RT gPCR normalized to GAPDH applying the 2-24€T method. b) GrB
proteihn secretion after treatment with GO or GONH: at fixed concentration (50 pg/mL) or left
untreated (Ctrl) determined by cytokine bead array (CBA).

All experiments were performed in triplicate and shown as means +SD. Statistical differences:
*p<0.05; **p<0.01 (One-way ANOVA with Bonferroni’s post tests and Tukey's multiple

comparisons test).
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Figure S8. LPS strongly induces CD69 and CD80 secretion in B cell. CD69 and CD80 analyzed
as described for figure 2 after treatment with GO or GONH: at fixed concentration (50 pg/mL) or
LPS (2pg/mL) or left untreated (Ctrl). All experiments were performed in triplicate and shown as
means +SD. Statistical differences: *p<0.05; **p<0.01; p<0.0001**** (One-way ANOVA with

Bonferroni’s post tests and Tukey's multiple comparisons test).
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Figure S9. Enriched pathways in GO using RMDB. Genes used for this analysis are differentially
expressed genes between GO and controls (p value < 0.005 and FDR < 0.1). Pathways are clustered
according to similarity.
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Figure S10. Enriched pathways in GONH:2 using RMDB. Genes used for this analysis are
differentially expressed genes between GONH> and controls (p value < 0.005 and FDR < 0.1).
Pathways are clustered according to similarity.
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Figure S11. GO and GONHz-induced Erk1/2 phosphorylation in B cells. Purified B cells from
PBMCs were incubated with GO or GONH: at fixed concentration (50 pg/mL) for 24 h or left
untreated. (a) Erk1/2 phosphorylation was assessed by western blot. p-ERK1/2 signal intensity was
normalized based on GAPDH and total ERK1/2. (b) Histograms showing p44 and p42 band signal
intensity fold change vs Ctrl. The results are presented as the mean + SEM from three independent
quantifications. Statistical differences: *p<0.05 (One-way ANOVA and Bonferroni’s post test and
Tukey's multiple comparisons test).
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