Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Synergistic Effect of Co/CoO Nanoparticles on Imine-based Covalent

Organic Framework for Enhanced OER Performance

Xiaoqin Ye^a, Jinchen Fan^{a,b*}, Yulin Min^{a,b}, Penghui Shi^{a,b}, Qunjie Xu^{a,b*}

^a Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai200090, China

^b Shanghai Institute of Pollution Control and Ecological Security, Shanghai200090, China

* Corresponding author

E-mail: jinchen.fan@shiep.edu.cn; xuqunjie@shiep.edu.cn

Figure S1. EDS spectrum of Co/CoO@COF.

Figure S2. Amplified FTIR spectrum of COF and Co/CoO@COF.

Figure S3. Brunner–Emmet–Teller (BET) analysis via N₂, (a) adsorption-desorption isotherm and (b) pore size distribution diagram of COF and Co/CoO@COF.

Figure S4. Histogram of overpotential by COF, Co/CoO@COF, CoO and RuO_2 according to the LSV curve at the current density of 10 mA cm⁻².

Catalyst	η (at 10 mA cm ⁻ 2)	Ref.	
Co/CoO@COF	278 mV	This work	
COF-CNT	389 mV	ACS Nano, 2021, 15, 3309-3319	
COF-C ₄ N	349 mV	ACS Energy Lett., 2019, 4, 2251-2258	
BP-CN-c	350 mV	Adv. Mater., 2021, 33, 2008752	
CoOOH HNSs	305 mV	J. Mater. Chem. A, 2021, 9, 3297-3302.	
F-Co ₃ Fe LDH	287 mV	J. Mater. Chem. A, 2019, 7, 14483-	
		14488	
O-CoP	310 mV	Adv. Funct. Mater., 2020, 30, 1905252	
Co/N-CNT	310 mV	Small, 2020, 16, 2002427	
Fe@BIF-73-NS	291 mV	Small, 2020, 16, 1907669	
Pt/NiO/Ni/CNTs	350 mV	Nanoscale, 2020, 12 , 14615-14625	
Ni-BDC/Ni(OH) ₂	320 mV	<i>Nanoscale</i> , 2019, 11 , 3599-3605	
Co ₃ O ₄ /Co@NCs	320 mV	Nano Energy, 2020, 77, 105200	

Table S1. Comparison of the activity for the Co/CoO@COF catalyst with recently

reported electrocatalysts

Figure S5. LSV curves of Co/CoO@COF-0.25, Co/CoO@COF and Co/CoO@COF-

0.75 at 1 M KOH.

Figure S6. CV curves acquired at the different scanning rates of 10-50 mV s⁻¹ from (a) COF, (b) Co/CoO@COF-0.25, (c) Co/CoO@COF and (d) Co/CoO@COF-0.75.

Figure S7. COF, Co/CoO@COF-0.25, Co/CoO@COF and Co/CoO@COF-0.75 amplified Nyquist plot at bias potential of 1.5V vs RHE.

The R_f of Co/CoO@COF is 2.36 Ω , which has a smallest resistance compared to Co/CoO@COF-0.25 (3.79 Ω), Co/CoO@COF-0.75 (3.47 Ω), and COF (4.13 Ω), which is conducive to the transport of charges.

		•	1
Catalyst	Cycle of	Remark after	Ref.
	CV	durability test	
Co/CoO@COF	2000	Negligible decay	This work
BP-CN-c	1000	Negligible decay	Adv. Mater. 2021, 33, 2008752
BP-CN-p	1000	40 mV decay	
F-Co ₃ Fe LDH	3000	Negligible decay	J. Mater. Chem. A, 2019, 7,
			14483-14488
FeS-NiS/TM	500	Negligible decay	Chem. Commun., 2019, 55 ,
			7335-7338
Ni _{0.9} V0 _{.1} -MOF	2000	Negligible decay	Catal. Sci. Technol., 2020, 10,
			4509-4512
Ni-BDC /	2500	Negligible decay	Nanoscale, 2019, 11, 3599-
Ni(OH) ₂		-	3605
NiFe LDH with	2000	6 mV decay	Small, 2018, 14, 1800136
Ni vacancies		-	

 Table S2. Comparison of the long-term durability of the Co/CoO@COF catalyst and

 related catalysts that have been reported

Table S3. Comparison of the stability of the Co/CoO@COF catalyst and related

Catalyst	Dur (h)	Remark after stability test	Ref.		
Co/CoO@COF	5	~87.90% retention	This work		
		at 10 mA cm ⁻²			
COF-C ₄ N	~2	~83.61% at η≈349	ACS Energy Lett., 2019,		
		mV	4, 2251-2258.		
Pt/NiO/Ni/CNTs	~10	~81.8% retention at	Nanoscale, 2020, 12 ,		
		10 mA cm ⁻²	14615-14625		
BP-CN-c	~5	~90% retention at			
		η≈350 mV	Adv. Mater., 2021, 33,		
RuO_2	~5	~58% retention at	2008752		
		η≈350 mV			
Co _{1.8} Ni(OH) _{5.6} @	~3	reasonable stability	Adv. Mater., 2019, 31 ,		
Co _{1.8} NiS _{0.4} (OH) _{4.8}		at η≈270 mV	1805658.		
IrO ₂ NPs	~1.2	almost the			
		deactivation	Angew. Chem. Int. Ed.,		
IrO ₂ /GCN containing	~4	35 mV decay at 20	2019, 58 , 12540.		
40 wt% IrO ₂		mA cm ⁻²			
$N-Ni_3S_2$	~2.77	negligible decay at	Adv. Mater., 2017, 29,		
		η≈320 mV	1701584.		

catalysts that have been reported

Note: Dur: Duration for stability test.