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Figure S2. Current rectification ratio (RR) for OPT2, C9T, and C10 T junctions as a function of 

the mechanical stretching force F. 
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Figure S1. Impact of mechanical stretching on the transition voltages of CnT and OPTn junctions 

with gold electrodes. 

 

-2 0 2 4 6 8 10

-1

0

1

 Vt+

 Vt-

V
t 

(V
)

Force (nN)

-2 0 2 4 6 8 10

-1

0

1

Force (nN)

 Vt+

 Vt-

V
t 

(V
)

A B

Au Au Au Au



S3 
 

Demonstration that RR(V→0) =1 Holds for Any Transport Mechanism By 

Tunneling 

To see that charge transport by tunneling in two-terminal setup can yield current 

rectification only at sufficiently large biases, one can start from the general trace formula1,2: 

I(V) =
2𝑒

ℎ
∫ 𝑑𝜀[𝑓 (𝜀 −

𝑒𝑉

2
, 𝑇𝐿) − 𝑓(𝜀 +

𝑒𝑉

2
, 𝑇𝑅)]𝜁(𝜀; 𝑉, … ) 

        ≡ I(V, … )                                                                                         (S1) 

where the two functions 𝑓(𝜀 ∓ 𝑒𝑉 2⁄ , 𝑇𝐿,𝑅) stand for the Fermi electronic distributions of the 

“left”(L) and “right” (R) electrodes at temperatures 𝑇𝐿,𝑅. 

 The RHS of the above equation is a general function I(V, … )  of bias (V) and other 

properties (denoted here by “…” and omitted below for the sake of simplicity of the embedded 

molecules (e. g., MO energies), electrodes (e.g., Fermi energy, DOS) and their couplings (often 

denoted by Γ). It can be expressed as a (Talor) power series expansion in V: 

I(V) = GV + 𝐺2𝑉2 + 𝐺3𝑉3 + ϑ(𝑉4)                                                       (S2) 

Notice that, save for situations (e.g., thermopower measurements) wherein temperature gradients 

are applied, the electrode temperatures are equal 𝑇𝐿 = 𝑇𝑅 = 𝑇, which makes the zero order term 

(𝑉0) in the above formula vanish. Eq S2 straightforwardly yields: 

RR(V) ≡ −
𝐼(𝑉)

𝐼(−𝑉)
= 1 +

2𝐺2

𝐺
𝑉 +

2𝐺2
2

𝐺2 𝑉2 +
2𝐺2(𝐺2

2−𝐺𝐺3)

𝐺3 𝑉3 + 𝜗(𝑉4)        (S3) 

which shows that 

RR(V)|𝑉=0 ≡ 1                                                                                         (S4) 
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As noted in the main text; tunneling mechanisms can yield current rectification RR ≠ 1 only at 

sufficiently large biases where the I − V curves are not only nonlinear but also asymmetric upon 

bias polarity reversal (𝐺2 ≠ 0). 

 

Notations and Some Useful Relations 

For reader’s benefit, we present here a summary of several symbols used in this paper that 

might create confusion: 

VVjunction=Vt - Vs: experimentally relevant (“external”) bias applied to the junction, representing 

the difference between tip’s and substrate’s potentials Vt and Vs, respectively. 

Vvac(z): unscreened potential, representing a linear interpolation between substrate’s and tip’s 

potentials: Vvac(zs,t) = Vs,t. Its derivative with reversed sign represents the external (unscreened) 

field Eext Ez=-dVvac(z)/dz whose value is an input parameter in quantum chemical calculations. 

v(r) v(x,y,z): internal, microscopic potential (embodying intramolecular screening) obtained in 

this paper via quantum chemical calculations considering an external (unscreened) bias V between 

the molecule’s ends. We should have written v(r; V) v(x,y,z; V) but have skipped the argument V 

to avoid a too complicated notation. The same applies to the next two symbols, for which a more 

complete/rigorous notation, v(z; V) and �̅�(𝑧; 𝑉), should have been used. 

v(z): internal, microscopic potential (embodying intramolecular screening) along Oz axis 

connecting the S and C atoms at molecule’s ends computed by averaging the microscopic potential 

over the (x, y) transverse directions weigthed by HOMO’s spatial distribution; it is a HOMO-

dedicated property (see eq (S12)).  
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�̅�(𝑧): coarse grain average of the microscopic potential v(z) whose linear dependence on z is 

obtained by fitting the curve of v(z) extracted from quantum chemical calculations. Its derivative 

with reversed sign represents the internal (screened) field 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = −𝑑�̅�(𝑧)/𝑑𝑧 . Its strict 

proportionality to Eext backed by extensive quantum calculations allows to define a dielectric 

constant 

𝜅 ≡
𝐸𝑒𝑥𝑡

𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
                                                   (S5) 

which turns out to be an important molecular property for the analysis presented in this paper.  

𝑉𝑚𝑜𝑙𝑒𝑐 = �̅�(𝑧𝑡) − �̅�(𝑧𝑠): bias at molecular ends responsible for the HOMO energy shift. The 

relationship 

𝑉𝑚𝑜𝑙𝑒𝑐 =
𝑉𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝜅
=

𝑉

𝜅
                                    (S6) 

is the direct consequence of eq (S5). Notice that this  is a HOMO-dedicated property of the 

molecule and should by no means be confused with the macroscopic SAM’s dielectric function. 

For the reader less acquainted with the notion of (HO)MO’s center of charge, whose longitudinal 

coordinate  

𝑧𝐻𝑂𝑀𝑂 ≡ 〈𝑧〉 =
∫ 𝑧 𝜌𝐻𝑂𝑀𝑂(𝑥,𝑦,𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

∫ 𝜌𝐻𝑂𝑀𝑂(𝑥,𝑦,𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
= ∫ 𝑧 𝜌𝐻𝑂𝑀𝑂(𝑧)𝑑𝑧     

defined by eq (7) in the main text and repeated here for the reader’s convenience, we refer here to 

the more familiar center of mass (CM). For a collection of discrete points having masses m1, m2, 

m3, ... located at r1, r2, r3, ...., the CM position is defined by 𝒓𝐶𝑀 =
∑ 𝑚𝑗𝒓𝑗𝑗

∑ 𝑚𝑗𝑗
. For a continuum mass 

distribution characterized by a mass density (r) at point r, the above expression yields 
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 𝒓𝐶𝑀 =
∫ 𝒓 𝜌(𝒓) 𝑑𝒓

∫ 𝜌(𝒓) 𝑑𝒓
  

Noting that the (HO)MO spatial density is normalized − i.e., ∫ 𝜌(𝒓) 𝑑𝒓 = 1−, the above formula 

is nothing but the counterpart of eq (7) of the main text.  

To end this section we note that, in order to keep notation reasonably simple, in the various 

formulas and figures presented across this paper we implicitly assume that the coordinates of the 

atoms S and C at the ends of the OPT3 molecule and the location of substrate and tip interfaces do 

not notably differ (zS≈zs and zC≈zt, respectively). 

Derivation of Several Important Forumulas Related to the Potentiometric Rule 

Utilized in the Main Text  

Assuming (cf. Figure S3) a vacuum-like potential profile Vvac(z) varying linearly across a 

junction along Oz axis between the values –V/2 and +V/2 at the electrode locations at zs and zt, (zs 

< zt) respectively yields the following expression 

𝑉𝑣𝑎𝑐(𝑧) =
𝑉

𝑧𝑡−𝑧𝑠
(𝑧 − 𝑧0)                                                                              (S7) 

 where  

𝑧0 ≡
𝑧𝑠+𝑧𝑡

2
                                                                                              (S8)     

For a point-like HOMO (to refer to the specific case under present consideration) located at zHOMO, 

eq (S5) yields a bias dependent energy of the form  

𝜀0(𝑉) ≡ −𝜀ℎ + 𝛿𝜀0(𝑉) = −𝜀ℎ − 𝑒𝑉(𝑧) = −𝜀ℎ − 𝑒𝑉
𝑧𝐻𝑂𝑀𝑂−𝑧0

𝑧𝑡−𝑧𝑠
          (S9) 



S7 
 

By comparing eq (S9) with eq (2) of the main text, we arrive at the following expression of the 

parameter  

𝛾 =
𝛿𝜀0(𝑉)

𝑒𝑉
=

𝑧0−𝑧𝐻𝑂𝑀𝑂

𝑧𝑡−𝑧𝑠
                                                                         (S10) 

Notice that according to eq (S10) (which coincides with eq (5) in the main text), the bias-driven 

HOMO shift parameter  is determined by the fractional HOMO offset from the junction’s center 

(z0 -zHOMO) relative to junction’s length (d=zt -zs). 

 

 

Figure S3. Schematic representation of the potentiometric rule to facilitate understanding the 

derivation of eqs S9 and S10. The various panels depict bias driven HOMO level shift expressed 

by eqs (S9) and (S10). Notice that the shift direction is determined both by the sign of V and by 

the (left-to-center or right-to-center) HOMO location. Reversing the sign of V on the Oy axis 

facilitates visualizing that HOMO shifts are in accord with potentiometer rule scenario. 
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 Certainly, the above result is based on important simlifications: a point-like HOMO and a 

smooth, linear potential profile across the junction. Still, the idea underlying eq (S10) can easily 

be generalized to a realistic case. In cases of a HOMO possessing an extended spatial distribution 

HOMO(x,y,z)=|HOMO(x,y,z)|2 and an arbitrary potential profile V(x,y,z), a general counterpart of 

eq (S9) can be expressed within the first order of perturbation theory (which we have validated 

against our transport measurements, see last paragraph of Section “Results”) 

𝛿𝜀0(𝑉) = 𝑒 𝛾𝑉 = −𝑒
∫ 𝑑𝑥𝑑𝑦𝑑𝑧𝜌𝐻𝑂𝑀𝑂(𝑥,𝑦,𝑧)𝑣(𝑥,𝑦,𝑧)

∫ 𝑑𝑥𝑑𝑦𝑑𝑧𝜌𝐻𝑂𝑀𝑂(𝑥,𝑦,𝑧)
            (S11) 

As just said, eq (S11) (which coincides with eq (10) in the main text) is a result valid in the first 

order with respect to the external perturbation (=applied bias). Therefore, it is worth emphasizing 

that our experimental transport data do validate this approach: within experimental accuracy, we 

can rule out nonlinear (i.e. quadratic or cubic) contributions in V (denoted by 2, 3,... in the main 

text) in the RHS of eq (2) of the main text. 

 Results for 0(V) and =0(V)/(eV) obtained from our quantum chemical calculations 

based on eq (S11) using the position dependent HOMO(x,y,z) and V(x,y,z) quantites computed 

microscopically are depicted by the red symbols in Figures 7A and 8B of the main text. 

 Important physical insight can be gained by examining the case of a potential profile whose 

spatial dependence in transverse directions can be disregarded, i.e., v(z)≈V(x,y,z). More precisely, 

we utilize a potential v(z) along the HOMO averaged over the transverse (x and y) spatial 

coordinates  

𝑣(𝑧) = −𝑒
∫ 𝑑𝑥𝑑𝑦𝜌𝐻𝑂𝑀𝑂(𝑥,𝑦,𝑧)𝑣(𝑥,𝑦,𝑧)

∫ 𝑑𝑥𝑑𝑦𝜌𝐻𝑂𝑀𝑂(𝑥,𝑦,𝑧)
      (S12) 
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This is precisely what we expect for our CP-AFM OPTn junctions consisting of a bundle of 

molecules (ref. 3) contacted to polycrystalline electrodes, which inherently implies an averaging 

in transverse directions. In this case, eq (S11) reduces to  

𝛿𝜀0(𝑉) = 𝑒 𝛾𝑉 = −𝑒
∫ 𝑑𝑧𝜌𝐻𝑂𝑀𝑂(𝑧)𝑣(𝑧)

∫ 𝑑𝑧𝜌𝐻𝑂𝑀𝑂(𝑧)
, 𝜌𝐻𝑂𝑀𝑂(𝑧) ≡ ∫ 𝑑𝑥𝑑𝑦 𝜌𝐻𝑂𝑀𝑂(𝑥, 𝑦, 𝑧)         (S13) 

where HOMO(z) is the one-dimensional HOMO density projected along the transport direction z.  

Noteworthily, the potential profile v(z) along the molecular axis z expressed by eq (S12) is a 

HOMO-dedicated average. This is exactly the potential that directly describes the bias-driven 

HOMO shift. The very detailed information depicted in Figures S5, S6 and S8 is motivated by the 

paramount importance of this quantity for the present analysis.   
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Figure S4. In cases where the potentiometer rule applies, the HOMO tracks the Fermi energy of 

the spatially closer electrode.  
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Additional Results of Quantum Chemical Calculations 

Results for the Microscopic Potential Profile.  

Although mathematically remarkable, the aforementioned agreement of the calculated theor 

value with expt, does not yet unravel the microscopic reason why the above estimate based on eq 

(5) is too large. More physical insight can be gained by examining the potential profile along 

molecular axis. Results of quantum chemical calculations for the (screened) potential v(z) along 

the line joining the end S and C atoms computed at fixed values of the applied (unscreened) field 

Ez are presented in Figures 7, S5, and S6. Noteworthily, the curves for v(z) calculated 

microscopically scale nearly perfectly with Ez  Eext (Figure S5B). Figure S5C unravels another 

interesting aspect. Reversing applied bias polarity does not notably change the shape of the 

microscopic potential v(z). That is, current rectification does not arise because the shape of the 

microscopic potential changes upon bias polarity reversal. This aspect is also important: in view 

of OPTn chemical asymmetry, this possibility cannot be ruled out a priori. 

 

Figure S5. (A) Curves obtained from quantum chemical calculations for the microscopic potential 

v(z) along the line joining the end S and C atoms of OPT3 molecules placed in various external 

fields E
z
. (B) The curves of A divided by the corresponding values of E

z
. show that the microscopic 

potential v(z) is proportional to E
z
. (C) Curves for v(z) illustrating that reversal of the applied 

electric field direction does not affect the shape of the microscopic potential. Given the OPT3 

chemical asymmetry along the molecular axis z, this is a nontrivial property from the point of 

view of current rectification. Field intensities Ez in inset expressed in GAUSSIAN units (u = 10
-4

 

a.u. = 0.0514 V/nm) to facilitate the preparation of the input files for quantum chemical 

calculations  (Ez = -5 u = -0.257 V/nm, Ez = -10 u = -0.514 V/nm, Ez = -15 u = -0.771 V/nm, Ez 

= -20 u = -1.028 V/nm). 

 

A B C
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Figure S6. Same as in Figure S5A and S5B but for negative bias (V<0). Field intensities Ez in 

inset expressed in GAUSSIAN units (u = 10
-4

 a.u. = 0.0514 V/nm) to facilitate the preparation 

of the input files for quantum chemical calculations (Ez = 5 u = 0.257 V/nm, Ez = 10 u = 0.514 

V/nm, Ez = 15 u = 0.771 V/nm, Ez = 20 u = 1.028 V/nm). 

 

A B

 

Figure S7. Same as in Figure 7B of the main text but for: (A) compressed OPT3 and (B) 

stretched OPT3.  

A B
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Embedded OPTn Molecules versus Isolated OPTn Molecules.  

Although molecules embedded in junctions may in general have properties significantly different 

from isolated molecules, in some cases coupling to electrodes may not too strongly affect certain 

properties. This could be expected especially in case of sufficiently long species. This was an 

important reason why here we focused on OPT3, which is the longest (commercially) available 

OPTn or at least at our disposal.  

What we used in the calculations based on eqs (5) to (11) is the HOMO spatial density of 

the isolated OPT3 molecule delimited by the transverse planes through the S and C atoms at the 

two molecular ends. It is the fact that our theoretical values for  agree well with the experimental 

 

Figure S8. Results of quantum chemical calculations revealing that OPT3 mechanical 

deformation has little impact on the shape of the microscopic potential. Notice the normalized 

coordinate on the abscissa, which makes the coordinates of the end S and C atoms (0 and 1, 

respectively) independent of molecule’s elongation. External electric field expressed in 

GAUSSIAN unit u=10
-4

 a.u. = 0.0514 volt/nm (Ez = ±20 u = ±1.028 V/nm). 
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ones that ultimately demonstrates that, indeed, the HOMO of the embedded molecules does not 

substantially penetrate into electrodes. Still, a microscopic justification of this behavior would be 

desirable. To this aim, we have computed HOMO’s longitudinal extension around its center of 

charge 𝑧𝐻𝑂𝑀𝑂 ≡ 〈𝑧〉. Amounting to √〈𝑧2〉 − 〈𝑧〉2 = 3.89 Å, it is smaller than HOMO’s distance 

zHOMO-zS=4.46 Å and zC-zHOMO=8.78 Å to the end S and C atoms, respectively. These values make 

it clear why in our present quantitative analysis corrections to OPT3’s HOMO due to electrodes 

could safely be neglected. This is an obvious simplification also for another important reason. In 

the present study, as the case of most experimental platforms to fabricate molecular junctions, we 

employed polycrystalline electrodes. This is an important, albeit ubiquitously overlooked 

challenge for theory, which often compares estimates computed for molecules adsorbed, e.g. on 

(111) FCC gold with data measured with polycrystalline gold electrodes. What is highly 

problematic here is that differences in properties of molecules adsorbed at different adsorption 

sites can be as substantial as differences between embedded and isolated molecules. 

Parenthetically one could also note at this point that HOMO’s extension in transverse direction 

(√〈𝑥2〉 − 〈𝑥〉2 = 0.79 Å and √〈𝑦2〉 − 〈𝑦〉2 = 0.82 Å) is much smaller than the average interchain 

spacing 5.35 Å. The latter corresponds to a coverage Σ ≈ 3.5 molecules/nm2, the value we have 

obtained for our SAMs via Rutherford backscattering (RBS) and nuclear reaction analysis (NRA).4 

This remark is important because it gives further support to conclusions of our earlier reports (e.g. 

refs. 5,6) that charge transport through our OPTn CP-AFM junctions is genuinely one dimensional, 

i.e. occurs along individual molecules without significant “perturbations” of interchain electron 

tunneling. 

Relationship between Molecule’s and Junction’s Elongations 

To obtain the (one-to-one!) correspondence between d(S,C) = d(S,C) - dequil(S,C) and djunction = 
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L – Lequil (the quantities on the Ox-axis in Figure 8B) we proceed as follows. We perform geometry 

optimization at fixed C-S distances d(S,C) smaller/larger than the equilibrium value (dequil(S,C) = 

13.2407 Å for OPT3) and determine the force Fmolec = f(d(S,C)) (compressive force Fmolec > 0, 

tensile force Fmolec < 0, respectively). With this force per molecule Fmolec in hand, we have an 

equation relating the force per junction F (applied in experiment) and the contact radius a: F = 

Fmolec N = Fmolec Σ  a2 (N being the number of molecules per junction and Σ the experimentally 

available SAM coverage4). Along with two other equations of the MD model (these are equations 

S7 and S8 in ref. 7) we thus have a system of three transcendent algebraic equations, whose 

numerical solution determines the values of the three unknown quantities F, a, and m (see ref. 7 

for details on the quantity m) as a function of Fmolec = f(d(S,C)). Once at given d(S,C) a and m are 

known, we compute the corresponding indentation h using the third equation of the MD model 

(this is equation S9 in ref. 7). Junction’s elongation (djunction = L – Lequil) is related 

straightforwardly related to the indentation: with MD’s convention sign djunction = hequil – h. 

Throughout, the subscript label equil refers to the equilibrium geometry of the nonstretched 

molecule (dequil(S,C) = 13.2407 Å at Fmolec, equil = 0). Needless to say, djunction  – d(S,C) represents 

the contacts’ elongation, which is obviously accounted for within the MD model. At pull-off, out 

of the total junction’s elongation of djunction = 0.84 Å, d(S,C) = 0.63 Å is the molecule’s 

elongation; the difference of 0.84 – 0.63 = 0.21 Å should basically be the elongation of the weaker 

van der Waals bond. Noteworthily, from the measured pull-off force, the MD model allows us to 

compute the work of adhesion (denoted by  in ref. 7, but obviously having nothing to do with the 

present quantity ), which contains just the information on our real junctions with polycrystalline 

electrodes (and hence inherently inaccessible via contacts’ microscopic modeling) we need to 

estimate junction’s length/elongation under stretching.   
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Figure S9. Comparison of the experimental and theoretical . The theoretical values of  were 

obtained by means of quantum chemical calculations using equations indicated in the inset. The 

relationship between molecule’s and junction’s elongation used to obtain the theoretical curves 

was deduced by combining quantum chemical calculations with Maugis-Dugdale model, as 

explained in SI’s last section. As visible, the theoretical values quantitatively agree with those 

deduced from the experimental data. 


