Supporting Information

A carbon-based material with hierarchical structure and intrinsic heteroatom for sodium-ion storage with ultrahigh rate and capacity

Xue-Yang Cui,[‡] Xiao-Dong Lin,[‡] Ya-Jing Wang, Pan Xu, Xiao-Xiang Fan, Ming-Sen Zheng, Jia-Jia Chen,^{*} and Quan-Feng Dong^{*}

Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China

‡These authors contributed equally to this work

*Corresponding author e-mail: qfdong@xmu.edu.cn; JiaJia.Chen@xmu.edu.cn

Figure S1. SEM images of HSIH-CMs (a, b) and HSIH-CMs@CaO (c, d). Scar bar: (a, c) 0.5 μm; (b, d) 0.2 μm.

Figure S2. TEM images of HSIH-CMs (a, b) and HSIH-CMs@CaO (c, d).

Figure S3. SAED patterns of the ordinary carbon (a) and HSIH-CMs (b) materials, respectively. Scar bar: (a) 5 1/nm; (b) 5 1/nm.

Figure S4. HAADF-STEM image (a) and corresponding EDX maps (b, c) of HSIH-CMs, scale bar: 100 nm.

Figure S5. XRD pattern of the HSIH-CMs@CaO material.

Figure S6. HAADF-STEM image (a) and corresponding EDX maps (b–d) of HSIH-CMs@CaO.

Figure S7. The XPS survey spectra (a) and Ca 2p spectra (b) of HSIH-CMs.

Figure S8. The XPS spectra for C 1s (a) and O 1s (b) of HSIH-CMs.

Figure S9. (a, b) *b* values of the HSIH-CMs anode at potentials of 0.26 V (a) and 0.51 V (b), respectively. (c, d) CV profiles of the HSIH-CMs with the capacitive contribution at scan rates of 0.1 mV s⁻¹ (c) and 1 mV s⁻¹ (d), respectively.

Figure S10. (a) CV curves of the ordinary carbon anode at various scan rates ranging from 0.1 to 2 mV s⁻¹. (b) *b* values of the ordinary carbon anode at potentials of 0.26 and 0.51 V. (c) CV profile of the ordinary carbon anode with the capacitive contribution at a scan rate of 0.1 mV s⁻¹.

Figure S11. The XPS spectra for C 1s (a) and O 1s (b) of HSIH-CMs at different temperature.

Figure S12. The first, second, and third galvanostatic discharge–charge profiles of (a) HSIH-CMs-800, (b) HSIH-CMs-1000, (c) HSIH-CMs-1200 and (d) HSIH-CMs-1400 anode at a current density of 100 mA g^{-1} .

Figure S13. Rate capability of the HSIH-CMs anode at different current densities ranging from 0.1 to 10 A g^{-1} .

Figure S14. Cycling performance and corresponding Coulombic efficiency of the ordinary carbon anode at a current density of 1 A g^{-1} .

Figure S15. (a) Nyquist plots of the HSIH-CMs and ordinary carbon anodes after 100 cycles. (b) The $Z'\sim \omega^{-1/2}$ plots of the HSIH-CMs and ordinary carbon anodes after 100 cycles at the low-frequency region, respectively.

Figure S16. (a, b) CV curves of the ordinary carbon cathode at different scan rates ranging from 1 to 10 mV

 s^{-1} (a) and 20 to 100 mV s^{-1} (b), respectively, in a potential window of 1–3.8 V.

Figure S17. (a) The 1st, 2nd and 3rd galvanostatic charge-discharge curves of the ordinary carbon cathode at a current density of 0.1 A g^{-1} . (b) Cycling performance and the corresponding Coulombic efficiency of the ordinary carbon cathode at current density of 0.1 A g^{-1} .

Figure S18. CV curves of the HSIH-CMs//HSIH-CMs SIC devices with different anode/cathode mass ratios: (a) 1:1, (b) 1:2, (c) 1:4. Galvanostatic charge-discharge curves of HSIH-CMs//HSIH-CMs SIC devices with different anode/cathode mass ratios of 1:1 (d, g), 1:2 (e, h), and 1:4 (f, i) at various current densities ranging from 0.1 to 10 A g^{-1} .

Table S1. Comparison of the electrochemical performance of our HSIH-CMs anode with recent reported carbon-based anodes for sodium-ion batteries/capacitors.

Materials	Initial Coulombic efficiency	Cycling stability (A/B/n)	Rate capability (C/D)	Ref.	
	80.2%	256/1/1000	190/5	This work	
	89.3%	167/5/10000	158/10		
Commercially available hard carbon	78%	225/0.025/100	/	Adv. Funct. Mater. 2011 , <i>21</i> , 3859.	
NSHC	~77%	289/0.02 /100	95/0.5	Electrochim. Acta, 2015 , 161, 23.	
Apple biowaste derived hard carbon	61%	85/1/1000	112/2	ChemElectroChem, 2016 , 3, 292.	
RSS	~80%	143/0.1/200	32/5	J. Alloys Compd. 2017 , 695, 632.	
NDC	50%	305/ 0.1 /150	157/1.0	Energy Fuels, 2017 , 1, 1090.	
Argan-X	83.9%	282/0.025/70	/	J. Mater. Chem. A 2017 , 5, 9917.	
FP-MP 5:2 1000	80%	191/0.15/100	282/0.03	Adv. Funct. Mater. 2019 , 29, 1901072.	
MSC	45%	103/0.5/3000	62/5	J. Mater. Chem. A 2016 , 4, 6472.	
EG	~49.53%	150 /0.1/2000	91/0.2	Nat. Commun. 2014 , 5, 4033.	
Natural graphite	~52%	127/0.1/300	~78/10	Adv. Funct. Mater. 2015 , 25, 534.	
GICs	~93%	110/0.2/6000	102/10	J. Power Sources 2015 , 293, 626.	
Graphite	90%	110/0.0327/100	~112/0.22	Adv. Energy Mater. 2018 , 8, 1702724.	
Few-layered graphene	~58%	~115/12/8000	125/10	Nano Lett. 2015 , 16, 543.	
NS-GNS	50.86%	260/1/10000	141/5	Energy Storage Mater. 2018 , 13, 134.	
S-SG	55.6%	~250/2/1000	217/3.2	Adv. Sci. 2018 , 5, 1700880.	
BPPG	67.8%	298/0.1/300	70/5	ACS Nano 2014 , 8, 7115.	
Wood fibre derived carbon	72%	196/0.1/200	/	ACS Appl. Mater. Interfaces, 2015 , 7,	

				23291.
НСС	86%	275/ 0.06/100	211/0.6	J. Mater. Chem. A 2016 , 4, 13046.
HTPC-H	60%	253/0.02/1000	103/0.2	Sci. Rep. 2016 , 6, 26246.
ANPGs	34.9%	155/0.05/200	~45/5	ChemSusChem, 2013 , 6, 56.
G@HPC	41.8%	134.2/0.2/200	100/5	Adv. Energy Mater. 2014 , 4, 1301584.
N–GF	42.6%	594.0/0.5/150	137.7/5	Adv. Mater. 2015 , <i>27</i> , 2042.
ACFs	46%	243/0.05/100	101/5	Nanoscale 2014 , 6, 1384.
DC-S	63.2%	271/1/1000	211/2	Energy Environ. Sci. 2015 , <i>8</i> , 2916.
Expanded 3D graphene	74%	425/ 0.1/100	148/10	Adv. Energy Mater. 2018 , 8, 1800353.
N-HC	79.5%	255.9/0.5/3000	150/2	Nano Energy 2019 , 56, 828.
N-FLG	83.5%	210/0.5/2000	113.8/10	Adv. Mater. 2019 , 31,
			56.6/40	1901261.
NACF	48.01%	105/1/8000	126/1	Nano Energy 2018 , 45, 220.
pTTPN	69.5%	74/10/2000	95/5	J. Mater. Chem. A, 2019 , 7, 6363.
N-GCNs	/	174/0.1/200	63/5	Adv. Funct. Mater. 2018 , 28, 1706294.
NDCA	~420/	195/1/1000	218/1	Carbon 2018 , 139,
NPGA	43%	132/5/2000	189/3	1117.
NSC	47.7%	260/0.5/1000	172/10	Energy Storage Mater. 2018 , 11, 274.
CNTs@N,O-CNFs	25.4%	225.8/0.05/300	98.2/2	<i>RSC Adv.</i> 2020 , 10, 7780.
PNCs-C600	27.2%	161/1/5000	136.3/10	Chem. Eng. J. 2021 , 415, 129012.
NHC-5	57.45%	~120/2/1000	280/0.5	Chem. Eng. J. 2021 , 420, 129647.
NS-GHNS	36%	~150/5/10000	112/20	Energy Storage Mater. 2020 , 25, 702.
PCNS	29%	180/7/10000	105/10	J. Power Sources 2020 , 475, 228679.

 $^{a}A/B/n$ means the capacity (A, mA h g⁻¹) remained after n cycles at a certain current density (B, A g⁻¹).

 $^{\rm b}\text{C/D}$ means the capacity (C, mA h g^-1) remained at a certain current density (D, A g^-1).

Table S2. Comparison of the electrochemical performance of our HSIH-CMs cathode with recent reported carbon-based cathodes for sodium-ion capacitors.

Materials	Reversible specific capacity (A/B)	Cycling stability (C/D/n)	Rate capability (E/F)	Ref.
3D MmCF	119/0.1	100/5/10000	91/10	This work
ZDPC	151.7/0.1	~87/1/2000	96.1/10	Adv. Funct. Mater. 2018, 28, 1800757.
NPHC	~250/1	100/2 /1000	68/5	Adv. Energy Mater. 2018 , <i>8</i> , 1800140.
3DFAC	71.3/1	55/5/2000	59/5	Adv. Energy Mater. 2018 , 8, 1702409.
OCG	105/0.1	~91/1/3000	32/5	Energy Storage Mater. 2018 , 11, 8.
NS-GHNS	~52/0.2	~32/ 5 /150	19/20	Energy Storage Mater. 2020 , 25, 702.
GDPC	152/0.05	~55/5/10000	~67/10	J. Mater. Chem. A 2017 , 5, 9917.
STC-16	70/0.1	/	/	Adv. Funct. Mater. 2019, 29, 1902858.
PSNC	72/0.1	/	40/12.8	Nano Energy 2016 , 23, 129.
GNS	~50/0.25	~36/1/1500	~32/5	Adv. Energy Mater. 2017 , 7, 1602654.
CS-800-6	67.5/0.1	~45/2/2000	40.7/5	J. Power Sources 2018 , <i>379</i> , 33.
NHPAC	110/0.1	/	30/2	J. Mater. Chem. A 2019 , 7, 13540.
N-OMC	105.6/0.5	~90/1/6500	58.8/10	J. Mater. Chem. A, 2021 , 9, 3360.
OPDN-CTF-A	127/0.1	~38.25/10/10000	45/10	J. Energy Chem. 2021 , 55, 304.
A-CNFs-4	82.5/0.05	67/0.5/1000	66/2	<i>RSC Adv.</i> 2020 , 10, 7780.

^aA/B means the reversible capacity (A, mA h g⁻¹) obtained at a certain current density (B, A g⁻¹).

^bC/D/n means the capacity (C, mA h g⁻¹) remained after n cycles at a certain current density (D, A g⁻¹).

 $^{\rm c}\text{E/F}$ means the capacity (E, mA h g^-1) remained at a certain current density (F, A g^-1).

Table S3. Comparison of the electrochemical performance of our optimal HSIH-CMs//HSIH–CMs device with other previously reported sodium–ion capacitors.

	Voltage	Energy	Power		
System	range	density	density	Cycling life (A/n/B)	Ref.
	(V)	(Wh kg⁻¹)	(kW kg ⁻¹)		
	0.01.0.0	224	0.18	010/ /10000 /2	This work
3D MMCF//3D MMCF	0.01-3.8	128	17.16	91%/10000/2	
	0.2	58.5	0.3	==== (J. Mater. Chem. A,
PSC//NTO@CNT	0-3	71.6	3	75%/4000/0.4	2015 , <i>3</i> , 21277.
		55	0.2		Adv. Funct. Mater.
Na ₂ II ₃ O///rGO film	1-3	21.7	3	80%/2500/0.5	2016 , <i>26</i> , 3703.
Nb ₂ O ₅		43.2	0.16		Chem. Mater.
nanosheets//PSC	1-3	24	5.76	80%/3000/1.3	2016 , 28, 5753.
		111.2	0.8		Nano Lett. 2016 ,
Na ₂ II ₃ O ₇ //AC	0.5-3.5	33.2	11.2	86%/3000/3.2	<i>16,</i> 5938.
Na ₂ Ti ₂ O ₄ (OH) ₂ //porou		65	0.5		J. Power Sources
s carbon	1-4	21	5	93%/3000/1	2017 , <i>353</i> , 85.
		117	0.58		J. Mater. Chem. A
Sb ₂ O ₃ //carbon fibers	1.5-4.3	65	5.8	90%/3500/1	2017 , <i>5</i> , 9169.
	1-4	142.7	0.25	90%/10000/1	Adv. Funct. Mater.
TiO ₂ /C//ZDPC					2018 , 28,
		61.8	25		1800757.
MoSe ₂ /G//AC	0.5–3	82	0.063	0.10/ /= 0.00 /=	Nano Energy
		43	6.688	81%/5000/5	2018 , <i>47</i> , 224.
	1-4.3	112.9	0.08	97%/1500/1	Adv. Mater. 2018,
Gr-Nb ₂ O ₅ //AC		62.2	5.33		<i>30,</i> 1800963.
3D-IO-FeS-		151.8	0.145		J. Mater. Chem. A
QDs@NC//AC	0.5-3.4	72.2	9.28	91%/5000/1	2019 , 7, 1138.
		111	0.2		Adv. Energy
3DFC//3DFAC	0-4		20	75.6/15000/2	Mater. 2018 , <i>8</i> ,
		67			1702409.
OCG// OCG	0.5-3.5	121.3	0.3	87%/2500/0.5	Energy Storage
					Mater. 2018 , 11,
		51.2	8		8.
Q-LT//rGO/AC	1.5-4.5	124	0.3	88%/5000/5	Nano Energy
		33	6		2019 , <i>59</i> , 17.
Na ₃ V ₂ O ₂ (PO ₄) ₂ F@PED		158	0.23	050//4000/4	J. Mater. Chem. A
OT//AC	1-4.2	25	7	85%/1000/1	2019 , 7, 1030.
		96	0.059		Small 2019 , 15,
V ₂ O ₅ ·nH ₂ O//MCMB	0.1-4	37.5	14	95%/800/1	1900379.
HAT-CNF-850//STC-16	0.5-4	95	0.19	90%/1000/1	Adv. Funct. Mater.

		18	13		2019 , <i>29</i> , 1902858
					1902858.
OMC//N-OMC	0-4	107	0.145	73%/1800/1	J. Mater. Chem. A,
		107	01210	/ 3/0/ 1000/ 1	2021 , <i>9</i> , 3360.
		153	0.041		ACS Appl. Mater.
3D-CoO-NrGO//AC	1–4	31	6.357	81%/5000/1	Interfaces
					2021 , <i>13</i> , 27999.
FeVO UNSs//	0-3.3	126	0.091	68%/9000/1.2	Nanomicro Lett.
NVOPF/rGO		20	5.2		2021 , <i>13</i> , 1.
		91	0.165		J. Power Sources
TiO ₂ -800s@PBC//AC	1-4	43.4	13	71%/5000/2	2021 , 493,
					229678.
V ₂ O ₃ @MCNFs//AC	1-4	96	0.25		ACS Appl. Mater.
		76.8	7.68	80.9/10000/1	Interfaces
					2021 , <i>13</i> , 10001.

^aA/n/B means the capacity retention percentage (A) after n cycles at a certain current density (B, A g⁻¹).

Table S4. The XPS spectra analysis result of HSIH-CMs at different temperature.

Sample	at.% of O	at.% of C=O	at.% of C–O
HSIH-CMs-800	5.77	1.71	4.06
HSIH-CMs-1000	4.44	1.73	2.71
HSIH-CMs-1200	3.14	2.14	1.00
HSIH-CMs-1400	3.02	2.12	0.90

Table S5. The electrochemical performance of HSIH-CMs samples

Sample	ICE (%)	Charge capacity of	Discharge capacity of 1 st
		1 st (mAh g ⁻¹)	(mAh g ^{−1})
HSIH-CMs-800	59.46	250.14	420.66
HSIH-CMs-1000	69.88	275.77	394.65
HSIH-CMs-1200	89.30	326.29	365.37
HSIH-CMs-1400	72.77	277.30	381.06