Supporting Information

Understanding the interfacial charge transfer in CVD grown Bi₂O₂Se/CsPbBr₃ nanocrystals heterostructure and its exploitation in superior photodetection: Experiment vs. Theory

Md Tarik Hossain¹, Mandira Das¹, Joydip Ghosh¹, Subhradip Ghosh¹, and P. K.

Giri^{1, 2*}

¹Department of Physics, Indian Institute of Technology Guwahati, Guwahati - 781039, India ²Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039,

India

Table S1: Details of the fitting parameters of time-resolved PL decay profiles for CsPbBr₃ NCs and $Bi_2O_2Se/CsPbBr_3$ heterostructure.

Sample	$\tau_1(ns)$	A_1	$\tau_2(\mathrm{ns})$	A_2	$ au_{ave}$ (ns)
CsPbBr ₃	4.55	2916	8.65	924	5.54
Bi ₂ O ₂ Se/CsPbBr ₃	1.60	2828	4.55	2781	3.06

^{*} Corresponding authors, email giri@iitg.ac.in (PKG),

Fig. S1: TEM image of a Bi₂O₂Se flake.

Fig. S2: (a) TEM image of as-synthesized $CsPbBr_3$ NCs. (b) A histogram of the size distributions of $CsPbBr_3$ NCs. The solid line shows the corresponding log-normal fitting to determine the average size of the NCs. (c) HRTEM image of a single $CsPbBr_3$ NC.

Fig. S3: EDX spectrum of $Bi_2O_2Se/CsPbBr_3$ NCs heterostructure.

Fig. S4: Absorption coefficient of (a) as-grown Bi₂O₂Se flakes (b) CsPbBr₃ NCs.

Fig. S5: TEM image of Bi_2O_2Se flakes with (a) 0 μ L (b) 2.5 μ L (c) 5.0 μ L of CsPbBr₃ NCs.

Fig. S6: Near-infrared photoluminescence emission spectrum of pristine Bi₂O₂Se flakes at room temperature.

Fig. S7: Steady-state photoluminescence emission spectrum of pristine CsPbBr₃ at room temperature. Symbols represent the experimental data, and the solid line shows the Gaussian fitting.

Fig. S8: TDOS and PDOS of bilayer Bi₂O₂Se/CsPbBr₃ NC heterostructure.

Fig. S9: Cyclic voltammetry spectra of pristine (a) CsPbBr₃ NCs and (b) 2D Bi₂O₂Se.

Cyclic voltammetry (CV) analysis:

CV measurement was performed to derive the band positions of Bi_2O_2Se and $CsPbBr_3$. The band positions were obtained following the equations,[1]

$$E_{VB} = -(E_{ox} + 4.71) eV$$

 $E_{CB} = -(E_{red} + 4.71) eV$

Electrochemical band gap = E_{CB} - E_{VB}

Bi₂O₂Se:

$$E_{VB} = -(E_{ox} + 4.71) eV = -(0.629 + 4.71) eV = -5.339 eV$$

 $E_{CB} = -(E_{red} + 4.71) eV = -(-0.405 + 4.71) eV = -4.305 eV$

Electrochemical band gap = (-4.305 - (-5.339)) eV = 1.034 eV

CsPbBr₃:

$$E_{VB} = -(Eox + 4.71) eV = -(1.08 + 4.71) eV = -5.79 eV$$

 $E_{CB} = -(Ered + 4.71) eV = -(-1.01 + 4.71) eV = -3.7 eV$

Electrochemical band gap = (-3.7 - (-5.8)) ev = 2.1 ev

Fig. S10: (a) IV characteristics of Bi_2O_2Se photodetector under dark and light illumination. (b) Dark and photo-IV characteristics of $Bi_2O_2Se/CsPbBr_3$ NCs heterostructure photodetector with different excitation intensity.

Fig. S11: Power-law fitting to the illumination power dependence of photocurrent for pristine Bi_2O_2Se device.

Fig. S12: (a) Photocurrent response under different bias voltages in $Bi_2O_2Se/CsPbBr_3$ NCs heterostructure photodetector. Inset depicts the nonlinear increase in photocurrent with the bias voltage. (d) Stability of photocurrent response under prolonged exposure to light pulses.

Fig. S13: Detectivity of pristine semiconducting Bi_2O_2Se and $Bi_2O_2Se/CsPbBr_3$ NCs heterostructure. The inset shows the respective excitation intensity-dependent detectivity at 405 nm.

Reference

1. Barman, M.K., et al., *An efficient charge separation and photocurrent generation in the carbon dot–zinc oxide nanoparticle composite.* Nanoscale, 2017. **9**(20): p. 6791-6799.