Balanced capture and catalytic ability toward polysulfides by designing MoO₂-Co₂Mo₃O₈ heterostructure for lithium-sulfur batteries

Junhao Li ^a, Zhangshi Xiong ^a, Yajie Sun ^a, Fangyuan Li ^a, Yufa Feng ^b, Jinyun Liao ^b, Hao Li ^b, Ming Wu ^a, Haoxiong Nan ^c, Kaixiang Shi ^{a, *}, Quanbing Liu ^{a, *}

^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China

^b School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China

^c State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan

University, Haikou 570228, PR China

Corresponding author. E-mail address:

shikx@hotmail.com(K. Shi); liuqb@gdut.edu.cn (Q. Liu)

Figure S1.TEM images of (a, b) polymer nanospheres and (c, d) NMCSs.

Figure S2. Nitrogen adsorption–desorption isotherms of (a) NMCSs and (c) 9MoO₂:2Co₂Mo₃O₈. Pore size distribution of (b) NMCSs and (d) 9MoO₂:2Co₂Mo₃O₈.

Figure S3. XRD patterns of various hosts.

Figure S4. Raman spectra of the samples.

Figure S5. EIS spectra of symmetrical Li_2S_6 - Li_2S_6 cells.

Figure S6. CV curves at various scanning speed: (a) NMCSs; (b) MoO_2 ; (c) $9MoO_2$: $2Co_2Mo_3O_8$; (d) $4MoO_2$: $5Co_2Mo_3O_8$ and (e) $Co_2Mo_3O_8$.

Figure S7. TGA curves of sulfur powder and 9MoO₂:2Co₂Mo₃O₈@S.

Figure S8. Digital images of separators after cycling: 9MoO₂:2Co₂Mo₃O₈ (left) and NMCSs (right).

Figure S9. CV curves for 9MoO₂:2Co₂Mo₃O₈ based cathode before and after cycling.

Figure S10. SEM images for 9MoO₂:2Co₂Mo₃O₈ based cathode after cycling.

Figure S11. Galvanostatic discharge–charge curves at various current densities with S loading of 1.0 mg cm⁻²: (a) NMCSs; (b) MoO_2 ; (c) $4MoO_2$: $5Co_2Mo_3O_8$ and (d) $Co_2Mo_3O_8$.

Figure S12. Cycling performance of the $9MoO_2:2Co_2Mo_3O_8$ based cathodes at 0.5 C with high sulfur loading.

Figure S13. (a) CV curve of $9MoO_2:2Co_2Mo_3O_8$ and $MoO_2/Co_2Mo_3O_8$ mixture. (b) Potentiostatic discharge profiles of $MoO_2/Co_2Mo_3O_8$ mixture at 2.05 V. (c) Cyclic stability performance at 1 C.

Samples -	D_{Li}^{+} (× 10 ⁻⁸ cm ² S ⁻¹)				
	I _{C1} peak	I _{C2} peak	I _A peak		
NMCSs	0.29	0.089	2.48		
MoO_2	0.29	0.18	1.89		
9MoO ₂ :2Co ₂ Mo ₃ O ₈	1.38	1.32	8.08		
4MoO ₂ :5Co ₂ Mo ₃ O ₈	0.97	1.6	7.63		
$Co_2Mo_3O_8$	1.07	1.18	12.67		

 Table S1. Lithium ion diffusion coefficient.

Table S2. Comparison of electrochemical	performance between MoO ₂ -Co ₂ Mo ₃ O ₈ and
other molybdenum-based heterostructures	reported by previous literatures.

Sample	S loading (mg cm ⁻²)	Rate (C)	Discharge capacity (mAh g ⁻¹)	Decay rate per cycle	Reference
9MoO ₂ :2Co ₂ Mo ₃ O ₈	1	1	509 (1000th)	0.056%	This
					work
$MoSe_2/MoO_2$	2.3	0.5	848 (500th)	0.046%	1
MoO_2/Mo_3N_2	1.2	0.5	760 (1000th)	0.024%	2
MoS ₂ -MoN	1.2	1	520 (1000th)	0.039%	3
MoO ₂ /Mo ₂ N	1	1	632 (300th)	0.028 %	4
MoO ₃ /MoO ₂	0.616	0.5	828 (500th)	0.016%	5
MoP/MoS_2	1.5	1	650 (500th)	0.082%	6
MoN-VN	1.13	1	555 (500th)	0.055%	7
MoS ₂ /Ni ₃ S ₂	1.2	1	739 (1000th)	0.029%	8
MoS_2/MoO_3	1.5	1	324 (600th)	0.009%	9
Co_9S_8 MoS_2	3	1	794 (400th)	0.091%	10
FeMoO ₄ /FeS ₂ /Mo ₂ S ₃	2.3	1	781 (300th)	0.171%	11
MoO_2/MoS_2	4	1	640 (140th)	0.211%	12
Ni-MoS ₂	1	1	422 (400th)	0.11%	13
NiO-NiCo ₂ O ₄	/	0.5	717 (500th)	0.059%	14
Co ₉ S ₈ /CoO	2.5	1	470 (1000th)	0.049%	15
WO ₃ –WS ₂	1	1	668 (500th)	0.04%	16
TiO ₂ -Ni ₃ S ₂	3.9	0.5	600 (900th)	0.038%	17
Nb_2O_5/Nb_4N_5	/	1	913 (400th)	0.08%	18
Fe_9S_{10}/Fe_3O_4	1	1	585 (500th)	0.08%	19
V ₂ O ₃ –VN	1.2	1	618 (800th)	0.038%	20

References

- 1 Q. Hao, G. Cui, Y. Zhang, J. Li and Z. Zhang, Chem. Eng. J., 2020, 381, 122672.
- 2 R. Li, X. Zhou, H. Shen, M. Yang and C. Li, ACS Nano, 2019, 13, 10049–10061.
- S. Wang, S. Feng, J. Liang, Q. Su, F. Zhao, H. Song, M. Zheng, Q. Sun, Z. Song,
 X. Jia, J. Yang, Y. Li, J. Liao, R. Li and X. Sun, *Adv. Energy Mater.*, 2021, 49, 2003314.
- 4 J.-L. Yang, S.-X. Zhao, Y.-M. Lu, X.-T. Zeng, W. Lv and G.-Z. Cao, *Nano Energy*, 2020, 68, 104356.
- 5 W. Yang, Y. Wei, Q. Chen, S. Qin, J. Zuo, S. Tan, P. Zhai, S. Cui, H. Wang, C. Jin, J. Xiao, W. Liu, J. Shang and Y. Gong, *J. Mater. Chem. A*, 2020, 8, 15816–15821.
- 6 J. Zhang, J. Zhang, K. Liu, T. Yang, J. Tian, C. Wang, M. Chen and X. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 46767–46775.
- 7 C. Ye, Y. Jiao, H. Jin, A. D. Slattery, K. Davey, H. Wang and S. Z. Qiao, Angew. Chem. Int. Ed. Engl., 2018, 57, 16703–16707.
- 8 Z. Jin, Z. Liang, M. Zhao, Q. Zhang, B. Liu, L. Zhang, L. Chen, L. Li and C. Wang, *Chem. Eng. J.*, 2020, **394**, 124983.
- 9 Y. Song, H. Zhou, X. Long, J. Xiao, J. Yang, N. Wu, Z. Chen, P. Li, C. Chen, J. Liao and M. Wu, *Chem. Eng. J.*, 2021, **418**, 129388.
- 10 B. Li, Q. Su, L. Yu, J. Zhang, G. Du, D. Wang, Di Han, M. Zhang, S. Ding and B. Xu, ACS Nano, 2020, 14, 17285–17294.
- 11 Z. Chen, A. Liao, Z. Guo, F. Yu, T. Mei, Z. Zhang, M. S. Irshad, C. Liu, L. Yu and X. Wang, *Electrochim. Acta*, 2020, **353**, 136561.
- 12 Y. Tang, Y. Huang, L. Luo, D. Fan, Y. Lu and A. Manthiram, *Electrochim. Acta*, 2021, **367**, 137482.
- 13 R. Zhang, Y. Dong, M. A. Al-Tahan, Y. Zhang, R. Wei, Y. Ma, C. Yang and J. Zhang, *J. Energy Chem.*, 2021, **60**, 85–94.
- 14 L. Hu, C. Dai, H. Liu, Y. Li, B. Shen, Y. Chen, S.-J. Bao and M. Xu, Adv. Energy

Mater., 2018, 8, 1800709.

- 15 N. Wang, B. Chen, K. Qin, E. Liu, C. Shi, C. He and N. Zhao, *Nano Energy*, 2019, 60, 332–339.
- 16 B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou, W. Lv, Y.-B. He, Y. Wan, F. Kang and Q.-H. Yang, *Adv. Energy Mater.*, 2020, **10**, 2000091.
- 17 R. Wang, C. Luo, T. Wang, G. Zhou, Y. Deng, Y. He, Q. Zhang, F. Kang, W. Lv and Q. H. Yang, *Adv. Mater.*, 2020, e2000315.
- 18 H. Chen, J. Wang, Y. Zhao, Q. Zeng, G. Zhou and M. Jin, *Nanomaterials*, 2021, 11. 1531.
- 19 Z. Xu, Z. Wang, M. Wang, H. Cui, Y. Liu, H. Wei and J. Li, *Chem. Eng. J.*, 2021, 422, 130049.
- 20 M. Zhao, Y. Lu, Y. Yang, M. Zhang, Z. Yue, N. Zhang, T. Peng, X. Liu and Y. Luo, *Nanoscale*, 2021, 13, 13085–13094.