Supporting Information

Synthetic Azobenzene-Containing Metal-Organic Framework Ion Channels Toward Efficient Light-Gated Ion transport at the Subnanoscale

Tianyue Qian, ^a Chen Zhao, ^b RuoxinWang, ^a Xiaofang Chen, ^a Jue Hou, ^c Huanting Wang*^a and Huacheng Zhang*^b

a. Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia. Email: huanting.wang@monash.edu

b. Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia. Email: huacheng.zhang@rmit.edu.au.

c. Manufacturing, CSIRO, Clayton, Victoria 3168, Australia.

1. Supplementary Figures

Figure S1. Structural characterization of bullet-shaped nanochannels. (a, b) SEM image of the (a) base side and (b) the tip side of PET nanochannel with a scale bar of 300 and 100 nm. (c, d) SEM image of (c) the base side and (d) the tip side of PET-UiO-66 nanochannel, with a scale bar of 300 and 100 nm. (e) Tip radius distribution, which has an average value of 39 ± 9 nm. (f) Base radius distribution, which has an average value of 242 ± 56 nm.

Figure S2. FTIR spectrum of the PET nanochannel membrane.

Figure S3. Characterization of the nanochannels. (a) EDX spectrum of a multiple nanochannel PET membrane (with a pore density of 10^8 cm^{-2}) with the insets of an SEM cross-sectional image of t the PET multi-nanochannel membrane, and the EDX carbon (C, red) and oxygen (O, green) mappings; the scale bars are 1 µm. (c) EDX spectrum of a PET-UiO-66 nanochannel membrane (with a pore density of 10^8 cm^{-2}) with the insets of an SEM cross-sectional image of the middle part of the PET multi-nanochannel membrane, and the EDX carbon (C, red), nitrogen (N, yellow), oxygen (O, green), zirconium (Zr, blue) mappings along the cross section of the membrane; the scale bars are bars are 600 nm.

Figure S4. Characterization of MOF particles. (a) EDX spectrum of UiO-66 crystals along with the insets of an SEM cross-sectional image of the PET multi-nanochannel membrane, and the EDX carbon (C, red), nitrogen (N, yellow), oxygen (O, green), zirconium (Zr, blue) mappings along the cross section of the membrane; the scale bars are 200 nm. (b) EDX spectrum of a UiO-66-AZODC-2:1 crystal with the insets of an SEM cross-sectional image of the PET multi-nanochannel membrane, and the EDX carbon (C, red), nitrogen (N, yellow), oxygen (O, green), zirconium (Zr, blue) mappings; the scale bars are 300 nm.

Figure S5. Powder X-ray diffraction (PXRD) patterns of UiO-66 crystals, UiO-66-AZODC mixedligandMOFsandUiO-AZODCcrystals.

Figure S6. SEM image of MOF particles. (a) SEM image UiO-66 particles. (b,c) SEM image of the mixed-ligand UiO-66-AZODC MOF particles with different ratios of ligands added. The ratio of BDC ligands to AZODC ligands are (b) 2:1 and (c)1:1, respectively. (d) SEM image UiO-AZODC MOF particles.

Figure S7. Ion transport properties. I-V curves of the PET nanochannels before and after the in-situgrowthofUiO-66-AZODC.

Figure S8. The UV-Vis spectra of UiO-66-AZODC-2:1 MOF powders before and after UV light(365nm)irradiationinwater

Figure S9. Ion transport properties of the reference sample. I-V curves of the PET-NC and UiO-66 SNC with UV light off and on.

Figure S10. TG (a) and derivative TG (b) curves of UiO-66-AZODC-2:1.

As shown in the above figure, based on the melting point differences (AZODC>117°C, BDC>300°C), the combustion of UiO-66-AZODC-2:1 includes the evaporation of water/solvent molecules at the initial period (before 117°C), the degradation of AZODC (117°C~340°C, peak at 240°C), the oxidation of BDC and the final transformation into zirconium oxide (>340°C, peak at 473°C). Therefore, the weight loss of ~12.5% is attributed to AZODC mass fraction, and its molar ratio can be calculated using the following equation:

the molar ratio of AZODC = AZODC mole number/UiO-66-AZODC mole number=

(AZODC mass fraction/AZODC molecular weight)/(UiO-66-AZODC mass fraction/UiO-66-AZODC molecular weight),

where the AZODC mass fraction = 12.5%, AZODC Mw = 270.24 g/mol, UiO-66-AZODC mass=100%, UiO-66-AZODC unit coordinated with one molecule of AZODC ($Zr_6C_{60}H_{38}O_{33}N_2$), Mw=1862.28 g/mol. Please note that this molecular formula is in an ideal condition, but in a real case, for MOFs with defects, the formula would be different.

The calculated molar ratio of AZODC is about 0.86. This means that one MOF unit shares ~0.86 AZODC molecule, which is close to the above suggested one-AZODC coordinated MOF molecular structure.

2. Supplementary Tables

On-off ratio	Materials	Target compound(s)	Reference
4.8	Zeolite-AZO membrane	Gas	1
1.3	AZO-protein voltage-gated channel	K ⁺ ion	2
2.1	AZO modified protein channel	Ions	3
5	AZO-P6A host-guest nanochannel	K ⁺ ion	4
3.3	AZO-PDDA nanochannel	Ions	5
1.3	AZO-UiO-66 PIM-1 mixed-matrix membrane	Gas	6
16.7	AZO-dimeric complex membrane	Cl ⁻ ion	7
17.8	AZO-confined UiO-66 subnanochannel	Li ⁺ ion	8
40.2	UiO-66-AZODC subnanochannel	Li^+ ion	This work

Table S1. Examples of on-off ratio in AZO-based light-gated nanochannels or subnanochannels

Table S2. EDX results of MOF crystals

Element	Mass Norm. [%]	Atom [%]	Abs. error [%] (1 sigma)	Rel. error [%] (1 sigma)
Carbon	43.13	71.47	0.93	12.58
Oxygen	13.89	17.28	0.35	14.73
Zirconium	41.43	9.04	0.29	4.10
Nitrogen	1.55	2.21	0.10	36.20

(a) EDX results of UiO-66 crystals

(b) EDX results of UiO-66-AZODC-2:1 crystals

Element	Mass Norm. [%]	Atom [%]	Abs. error [%] (1 sigma)	Rel. error [%] (1 sigma)
Carbon	33.37	61.95	0.66	13.82
Oxygen	15.22	21.22	0.34	15.45
Zirconium	48.25	11.80	0.28	4.12
Nitrogen	3.16	5.03	0.13	29.55

According to the N contents by EDX results, it can be concluded that the N content originated from AZODC is about **1.61%** (obtained by 3.16%-1.55%). Then, we calculated the N contents from the above hypothesized one AZODC coordinated with one cavity of UiO-66, using the following equation:

N content=N mass/UiO-66-AZODC mass×100%=

(14.01 g/mol×mole number)/(1862.28 g/mol×mole number)×100%

The molar ratio between N and UiO-66-AZODC unit is 2:1, then the final N content in the UiO-66-AZODC unit is calculated to be 1.5%. This calculated result is very close to the EDX result of **1.61%**, indicating that the UiO-66-AZODC mostly consists of UiO-66 with one AZODC. Please note that EDX offers element content of a limited region of the sample instead of expressing the elementary compositions of the whole sample, this may be the reason that causes the differences. References

- 1. K. Weh, M. Noack, K. Hoffmann, K. P. Schroder and J. Caro, *Microporous Mesoporous Mater.*, 2002, 54, 15-26.
- 2. A. Mourot, M. A. Kienzler, M. R. Banghart, T. Fehrentz, F. M. Huber, M. Stein, R. H. Kramer and D. Trauner, *ACS Chem. Neurosci.*, 2011, 2, 536-543.
- 3. A. Rullo, A. Reiner, A. Reiter, D. Trauner, E. Isacoff and G. Woolley, *Chem. Commun.*, 2014, 50, 14613-14615.
- 4. Y. Sun, J. Ma, F. Zhang, F. Zhu, Y. Mei, L. Liu, D. Tian and H. Li, *Nat. Commun.*, 2017, 8, 260.
- 5. K. Y. Chun, Y. J. Son, S. Jo and C. S. Han, *Small*, 2018, 14, 1703618.
- 6. N. Prasetya and B. P. Ladewig, J. Mater. Chem. A, 2019, 7, 15164-15172.
- 7. M. Ahmad, S. Metya, A. Das and P. Talukdar, *Chem. Eur. J.*, 2020, 26, 8703-8708.
- 8. T. Qian, H. Zhang, X. Li, J. Hou, C. Zhao, Q. Gu and H. Wang, *Angew. Chem. Int. Ed.*, 2020, 59, 13051-13056.