Supporting Information (SI):

Vanadium-mediated ultrafine Co/Co₉S₈ nanoparticles anchored on

Co-N-doped mesoporous carbon enable efficient hydrogen evolution

and oxygen reduction reactions

Danyang He,^a Liyun Cao,^{*a} Jianfeng Huang^a, Linlin Wang,^a Guodong Li,^b Zhenting

Liu,^a Yongqiang Feng,^a Yijun Liu,^c Limin Pan^c and Liangliang Feng^{*a}

^a School of Materials Science & Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an Shaanxi, 710021, P.R. China

^b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

^c Guangdong Mona Lisa Group Co. Ltd., Foshan, Guangdong 528211, PR China.

* Corresponding authors, E-email address: 2644245930@qq.com (L. Cao), fengll@sust.edu.cn (L. Feng)).

Number of pages: S15

Number of Figures: S17

Number of tables: 2

Fig. S1 XRD pattern of sample-600 catalyst.

Fig. S2 XRD patterns of as-prepared samples with zoomed-in image.

Fig. S3 Structural and morphologic characterization of CoS2@g-C3N4: (a, b) SEM images with

Fig. S4 Structural and morphologic characterization of CS@NC-700: (a, b) SEM images with

Fig. S5 SEM images of VCS@NC-700 sample with different magnifications:

(a) ×30 k; (b) ×100 k.

Fig. S6 TEM image of VCS@NC-700 sample.

Fig. S7 Structural and morphologic characterization of VCS@NC-800: (a, b) SEM images with

Fig. S8 Structural and morphologic characterization of VCS@NC-900: (a, b) SEM images with

Fig. S9 LSV polarization curves of VCS@NC-700, VCS@NC-800 and VCS@NC-900 catalysts

Fig. S10 Structural and morphologic characterization of VCS@NC-700 after durability test for100 h in 1.0 M KOH: (a) SEM image; (b) low magnification TEM image; (c) HRTEM image and(d) the magnified area of the corresponding lattice fringes.

Fig. S11 XPS spectra of the VCS@NC-700 after HER electrochemical test in 1.0 M KOH:

(a) survey; (b) C 1s; (c) N 1s; (d) S 2p; (e) Co 2p; (f) V 2p.

Fig. S12 Chronoamperometric profiles of VCS@NC-700 in (a) acidic and (b) neutral solutions.

Fig. S13 LSV curves of the as-synthesized samples in O₂-saturated 0.1 M KOH with the sweep

rate of 5 mV s⁻¹ at 1600 rpm.

Fig. S14 LSV curves of the 20wt% Pt/C catalyst at a sweep rate of 5 mV s⁻¹ with the different rotation speeds ranging from 400 to 2025 rpm and (b) the stability test of 20wt% Pt/C after

2000 cycles in O_2 -saturated 0.1 M KOH solution.

Fig. S15 Chronoamperometric response of VCS@NC-700 and 20% Pt/C before and after addition of 10 ml 3.0 M methanol at 600 s.

Fig. S16 SEM image of VCS@NC-700 after 2000 cycles in O2-saturated 0.1 M KOH solution.

Fig. S17 XPS spectra of the VCS@NC-700 after ORR electrochemical stability test in 0.1M

KOH: (a)Survey; (b) C 1s; (c) N 1s; (d) S 2p; (e) Co 2p; (f) V 2p.

Table S1. Electrocatalytic HER performance of the VCS@NC-700 electrode compared with those

Catalysts	Electrolytes	Loading amount(mg cm ⁻²)	Current density (j, mA cm ⁻²)	Overpotential at corresponding <i>j</i> (mV)	Stability test	Reference
VCS@NC-700	1.0 M KOH	2.80	10	117	100 h	This work
	0.5 M H ₂ SO ₄			178	20 h	
	1.0 M PBS			210	20 h	
Co ₉ S ₈ /MoS ₂ @NSOC	1.0 M KOH	2.00	10	194	12 h	J. Energy Chem., 2020, 44, 90-96
	0.5 M H ₂ SO ₄	2.80		233	12 h	
C09S8@N-S-HPC	1.0 M KOH	0.26	10	173	1000 cycles	Appl. Catal, B- Environ., 2019, 254, 186-193
CFP@Co ₉ S ₈ @C	1.0 M KOH	1.61	10	290	30 h	J. Mater. Chem. A, 2018, 6, 14752-14760
CoSx	1.0 M KOH	/	10	127	36 h	J. Mater. Chem. A, 2018, 6, 7592- 7607
Co-MOFs@GO	1.0 M KOH	0.31	10	~310	1000 cycles	Nano Energy, 2016, 30, 93-102
Co ₉ S ₈ /WS ₂ /Ti foil	1.0 M KOH	2.20	10	138	24 h	J. Mater. Chem. A, 2017, 5, 23361-23368
Co ₉ S ₈ -Ni _x S _y /NF	1.0 M KOH	9.00	10	163	70 h	J. Mater. Chem. A, 2016, 4, 9744- 9749
Co ₉ S ₈ /CC	1.0 M PBS	0.40	10	175	100 h	J. Mater. Chem. A, 2016, 4, 6860- 6867
CoP/Co ₉ S ₈	1.0 M KOH	/	10	155	10 h	ACS Appl. Mater. Interfaces, 2019, 11, 9023-9032
	1.0 M KOH			89	50000s	ACS Appl. Mater.
Co ₉ S ₈ -NSC@Mo ₂ C	0.5 M H ₂ SO ₄	0.43	10	74	48 h	Interfaces, 2018, 10, 22291-22302
	1.0 M PBS			121	20 h	
Co ₉ S ₈ /NC@MoS ₂	1.0 M KOH	0.28	10	67	12 h	ACS Appl. Mater.

of reported Co₉S₈-based carbon electrocatalysts in pH-universal electrolytes.

	0.5 M H ₂ SO ₄			117	12 h	Interfaces, 2017,
	1.0 M PBS			261	12 h	9,28394-28403
	1.0 M KOH			250	10 h	ACS Appl. Mater.
Co ₉ S ₈ @C	0.5 M H ₂ SO ₄	0.30	10	240	10 h	Interfaces, 2015, 7, 980-988
	1.0 M PBS			280	10 h	
C0 ₉ S ₈ -MoS ₂ @N- CNAs@CNFs	1.0 M KOH	/	10	163	2000 cycles	ACS Appl. Mater. Interfaces, 2020, 12, 10280-10290
Co ₉ S ₈ /NSG	0.5 M H ₂ SO ₄	2.00	10	247	16 h	ACS Sustainable Chem. Eng., 2019, 7, 19442-19452
CoS ₂ HNSs	1.0 M KOH	1.50	10	193	12 h	Nanoscale, 2018, 10, 4816-4824
Co/Co ₉ S ₈ @NSOC-T	1.0 M KOH	0.64	10	216	10 h	Chem. Commun., 2019, 55,3203- 3206
C0 ₉ S ₈ HMs-140/C	0.1 M KOH	0.80	10	250	200 cycles	Electrochim. Acta, 2017, 246, 380-390
Co ₉ S ₈	0.5 M H ₂ SO ₄	0.55	10	178	2000 cycles	Electrochim. Acta, 2018, 281, 198-207

of reported Co₉S₈-based carbon electrocatalysts in 0.1 M KOH electrolyte. Loading Potential (V, at Stability Catalysts Electrolyte Reference amount half peak) test (mg cm⁻²) VCS@NC-700 0.1 M KOH 2.80 0.901 2000 cycles This work Appl. Catal. B- Environ., Co₉S₈-NSHPCNF 0.1 M KOH 2000 cycles 0.30 0.82 2020, 268, 118437 10000 Appl. Catal. B- Environ., IOSHs-NSC-Co₉S₈ 0.1 M KOH 0.82 1.00 cycles 2020, 260, 118209 Appl. Catal, B- Environ., Co₉S₈@N-S-HPC 0.1 M KOH 0.26 ~0.85 5000 cycles 2019, 254, 186-193 Chem. Eng. J., / / Co9S8@G/NS-PCNFs 0.1 M KOH 0.82 2019, 378, 122247 J. Mater. Chem. A, Co₉S₈@TDC-900 0.1 M KOH 1.70 0.783000 cycles 2019,7, 7389-7395 ACS Appl. Mater. Interfaces, Co₉S₈@NC 0.1 M KOH / 0.861 12 h 2020, 12, 33740-33750 Co₉S₈-MoS₂@N-ACS Appl. Mater. Interfaces, 0.1 M KOH / 0.82 40000 s CNAs@CNFs 2020, 12, 10280-10290 Carbon, Co₉S₈/N, P-APC 0.1 M KOH 0.25 0.78 / 2019, 144, 557-566 Carbon, Co₉S₈/S-CNTs 0.1 M KOH 0.29 0.810 35000 s 2019, 144, 259-268 Catal. Sci. Technol., CE-Co₉S₈@N,SCM 0.1 M KOH 0.10 0.88 / 2019, 9, 5757-5762 J. Mater. Chem. A, 0.1 M KOH Co₉S₈@CT 0.20 0.86 / 2018, 6, 5935-5943 J. Mater. Chem. A, Co₉S₈/CNT 0.1 M KOH 0.20 0.82 7200 s 2017, 5, 21353-21361 J. Mater. Chem. A, Co₉S₈/NHCS 0.1 M KOH 10000 s 0.15 0.86 2016, 4, 11342-11350 ACS Appl. Mater. Interfaces, Co₉S₈/CD@NSC 0.1 M KOH 0.84 40000 s / 2019, 11, 14085-14094 ACS Appl. Mater. Interfaces, Ni₃Fe-Co₉S₈/rGO 0.1 M KOH 0.25 0.80 / 2019, 11, 4028-4036 ACS Appl. Mater. Interface, Co₉S₈@N-C 0.1 M KOH / 20000 s 0.83 2018, 10, 25415-25421 Co₉S₈/NSC 0.1 M KOH / 0.896 20000 s ACS Appl. Mater. Interfaces,

Table S2. Electrocatalytic ORR performance of the VCS@NC-700 electrode compared with those

					2017, 9, 36755-36761
Co/Co ₉ S ₈ /rGO/	0.1 M KOH	/	0.776	15000	Inorg. Chem. Front.,
MWCNT					2019, 6, 2558-2565
Co ₉ S ₈ /C	0.1 M KOH	0.02	0.778	5000 cycles	Nanoscale,
					2019,11, 901-907
Co ₉ S ₈ @Co ₉ S ₈ @MoS ₂	0.1 M KOH	0.20	0.77	/	Inorg. Chem. Front.,
					2020, 7, 191
Co ₉ S ₈ HMs-140/C	0.1 M KOH	0.8	0.82	2000 cycles	Electrochim. Acta,
					2017, 246, 380-390
Co ₉ S ₈ /CS-800	0.1 M KOH	/	0.818	10 h	Electrochim. Acta,
					2018, 265, 32-40
Co ₉ S ₈ @NS-3DrGO	0.1 M KOH	0.20	0.826	30000 s	Dalton T.,
					2018, 47 14992-15001
W-N/C4@Co9S8		,	0.945(12000 -	Electrochim. Acta,
@WS ₂	0.1 M KOH	/	~0.8456	12000 s	2020, 351, 136249
Co ₉ S ₈ /Co-NCNT	0.1 M KOH	/	0.93	16 h	J. Colloid and Interf. Sci.,
					2019, 557, 291-300
Co ₉ S ₈ @NSC	0.1 M KOH	0.28	0.865	3000 cycles	ChemElectroChem,
					2018, 5, 355-361
T-CCSNC	0.1 M KOH	/	0.78	10000 s	New J. Chem.,
					2020,44, 9522-9529