Supporting information

Phosphatidylcholine-Mediated Regulation of Growth Kinetics for Colloidal Synthesis of Cesium Tin Halide Nanocrystals

Lu-Ming Wang,^{‡a} Jia-Kai Chen,^{‡b,c} Bin-Bin Zhang,^{b,c} Qi Liu,^a Yang Zhou,^d Jie Shu,^e Zuoshan Wang,^a Naoto Shirahata,^{b,c} Bo Song,^a Omar F. Mohammed,^d Osman M. Bakr,^d and Hong-Tao Sun^{*b}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123, China

^bInternational Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan

^cGraduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan

^dAdvanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

^eAnalysis and Testing Center, Soochow University, Suzhou 215123, China

Figure S1. a-c) TEM images (a), XRD patterns (b), and PLQY measurements (c) of large-sized CsSnI₃ synthesized with different Cs:Sn:I precursor ratios. All samples are large-sized precipitates obtained after the first centrifugation of the crude solution. d) Photographs of the CsSnI₃ solution with different Cs:Sn:I precursor ratios after the first centrifugation. The detailed synthetic parameters are shown in **Table S1**.

Figure S2. Photographs of the $CsSnI_3$ NCs supernatant obtained after the first centrifugation. The samples were synthesized with different ratios of $C_{42}P$ to Cs.

Figure S3. Additional TEM images of C₄₂P-0.1.

Figure S4. Additional TEM images of C₄₂P-0.2.

C₄₂P-0.1

Figure S5. (a-c) Multiple TEM images of $C_{42}P$ -0.3. (d) Size-distribution histogram of $C_{42}P$ -0.3 based on multiple TEM images.

Figure S6. (a-c) Multiple TEM images of C₄₂P-0.4. (d) Size-distribution histogram of C₄₂P-0.4 based on multiple TEM images.

Figure S7. PLQY measurements of (a) C₄₂P-0.1, (b) C₄₂P-0.2, (c) C₄₂P-0.3, and (d) C₄₂P-0.4.

Figure S8. Additional TEM images of C₂₂P-0.2.

b

Figure S9. Additional supplementary TEM images of C₃₂P-0.2.

Figure S10. Additional supplementary TEM images of C₄₄P-0.2.

Figure S11. PLQY measurements of (a) C₂₂P-0.2, (b) C₃₂P-0.2, and (c) C₄₄P-0.2.

Figure S12. PL decay traces (black dots) and fitted curves (red lines) of (a) C₂₂P-0.2, (b) C₃₂P-0.2, and (c) C₄₄P-0.2.

Figure S13. Additional TEM images of CsSnI_{2.5}Br_{0.5}.

Figure S14. Additional TEM images of CsSnI2.25Br0.75.

Figure S15. EDS spectra of (a) CsSnI_{2.5}Br_{0.5} and (b) CsSnI_{2.25}Br_{0.75} NCs synthesized with C₄₂P. Note that we used the nominal compositions for denoting the products.

Figure S16. (a) PLQY measurements of CsSnI_{2.5}Br_{0.5} and CsSnI_{2.25}Br_{0.75} NCs synthesized with C₄₂P. (b) Photographs of CsSnI_{2.5}Br_{0.5} and CsSnI_{2.25}Br_{0.75} crude solution after the first centrifugation. The samples were synthesized with and without (W/O) C₄₂P. We note that NCs cannot be obtained in the absence of C₄₂P.

Figure S17. ³¹P NMR spectrum of diluted C₄₂P solution.

Table S1. Synthetic parameters used for the synthesis of large-sized $CsSnX_3$ powders and NCs. We denote the samples synthesized without using phosphatidylcholines by the molar ratio of Cs, Sn, and I precursors, and the mixed halide products by their nominal compositions. `With` and `W/O` stand for with and without using C₄₂P in the synthesis, respectively.

Sample	Cs-Oleate (mL)	Sn(Oct) ₂ (mL)	NH ₄ I (g)	C ₄₂ H ₈₀ NO ₈ P (g)	C ₂₂ H ₄₄ NO ₈ P (g)	C ₃₂ H ₆₄ NO ₈ P (g)	C ₄₄ H ₈₄ NO ₈ P (g)	NH ₄ Br (g)	OA (mL)	OAm (mL)	Temperature (°C)
0.25:4.2:3	0.5	1.12	0.3436						3	3.5	250
0.25:4.8:3	0.5	1.28	0.3436						3	3.5	250
0.25:5.2:3	0.5	1.44	0.3436						3	3.5	250
0.15:4.8:3	0.3	1.28	0.3436						3	3.5	250
0.35:4.8:3	0.7	1.28	0.3436						3	3.5	250
0.25:4.8:2	0.5	1.28	0.2291						3	3.5	250
0.25:4.8:4	0.5	1.28	0.4581						3	3.5	250
CsSnI _{2.25} Br _{0.75} (W/O)	0.5	1.28	0.2577					0.0574	3	3.5	250
CsSnI _{2.5} Br _{0.5} (W/O)	0.5	1.28	0.2863					0.0383	3	3.5	250
C ₄₂ P-0.1	0.5	1.28	0.3436	0.0155				/	3	3.5	250
C ₄₂ P-0.2	0.5	1.28	0.3436	0.0309				/	3	3.5	250
C ₄₂ P-0.3	0.5	1.28	0.3436	0.0464				/	3	3.5	250
C ₄₂ P-0.4	0.5	1.28	0.3436	0.0618				/	3	3.5	250
C ₂₂ P-0.2	0.5	1.28	0.3436		0.0194			/	3	3.5	250
C ₃₂ P-0.2	0.5	1.28	0.3436			0.0251		/	3	3.5	250
C ₄₄ P-0.2	0.5	1.28	0.3436				0.0318	/	3	3.5	250
CsSnI _{2.25} Br _{0.75} (With)	0.5	1.28	0.2577	0.0309				0.0574	3	3.5	250
CsSnI _{2.5} Br _{0.5} (With)	0.5	1.28	0.2863	0.0309				0.0383	3	3.5	250

Sample	A1	τ_1 (ns)	A2	τ_2 (ns)	A ₀	Adjusted R-square	τ _{ave} (ns)
C ₄₂ P-0.1	0.26	0.27	0.65	0.78	0.0802	0.9978	0.72
C ₄₂ P-0.2	0.06	0.36	0.79	1.97	0.1367	0.9969	1.95
C ₄₂ P-0.3	0.29	2.26	0.69	1.25	0.0422	0.9992	1.69
C ₄₂ P-0.4	0.12	0.41	0.83	1.64	0.0521	0.9992	1.59
C ₂₂ P-0.2	0.06	0.20	0.83	1.63	0.1240	0.9984	1.62
C ₃₂ P-0.2	0.16	0.52	0.80	1.70	0.0519	0.9994	1.63
C ₄₄ P-0.2	0.15	0.49	0.81	1.36	0.0446	0.9993	1.31
CsSnI _{2.25} Br _{0.75} (With)	0.62	1.06	0.29	0.36	0.1058	0.9959	0.96
$CsSnI_{2.5}Br_{0.5}(With)$	0.09	0.15	0.88	1.33	0.0342	0.9988	1.32

Table S2. Fitting results of PL decay curves, adjusted R-square, and τ_{ave} .

Formula	Emission peak (nm)	PLQY (%)	Reference
CsSnI ₃	ca. 945	0.06	1
CsSnBr ₃	ca. 660	0.14	1
CsSn(Br0.5I0.5)3	ca. 730	0.05	1
CsSnCl ₃	ca. 490	≤0.14	1
$BA_2SnI_4^a$	628.2	0.5	2
BA2[FASnI3]SnI4	689	2.6	2
CsSnBr ₃	682	2.1	3
CsSnI ₃	780	<1	4
CsSnI ₃	849	0.35	5
CsSnBr ₃	677	0.60	5
CsSnCl ₃	475	0.17	5
CsSnI ₃	944	18.4	6
CsSnI _{2.5} Br _{0.5}	925	7.7	6
CsSnI _{2.25} Br _{0.75}	896	7.1	6
FASnI ₃	ca. 663-763	0.3	7
CsSnI ₃	944	12.0	This work
CsSnI _{2.5} Br _{0.5}	926	10.9	This work
$CsSnI_{2.25}Br_{0.75}$	902	9.5	This work

Table S3. Optical properties of the tin halide perovskite NCs ever reported.

^aBA is the abbreviation of butylammonium.

References

- 1 T. C. Jellicoe, J. M. Richter, H. F. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham and M. L. Bohm, *J. Am. Chem. Soc.*, 2016, **138**, 2941-2944.
- 2 M. C. Weidman, M. Seitz, S. D. Stranks, W. A. Tisdale, ACS Nano, 2016, 10, 7830-7839.
- 3 A. Wang, Y. Guo, F. Muhammad, Z. Deng, Chem. Mater., 2017, 29, 6493-6501.
- 4 A. B. Wong, Y. Bekenstein, J. Kang, C. S. Kley, D. Kim, N. A. Gibson, D. Zhang, Y. Yu, S. R. Leone, L. W. Wang, A. P. Alivisatos and P. Yang, *Nano Lett.*, 2018, **18**, 2060-2066.
- 5 C. Kang, H. Rao, Y. Fang, J. Zeng, Z. Pan and X. Zhong, *Angew. Chem., Int. Ed.*, 2021, **60**, 660-665.
- 6 Q. Liu, J. Yin, B. B. Zhang, J. K. Chen, Y. Zhou, L. M. Zhang, L. M. Wang, Q. Zhao, J. Hou, J. Shu, B. Song, N. Shirahata, O. M. Bakr, O. F. Mohammed and H. T. Sun, *J. Am. Chem. Soc.*, 2021, **143**, 5470-5480.
- 7 L. Dai, Z. Deng, F. Auras, H. Goodwin, Z. Zhang, J. C. Walmsley, P. D. Bristowe, F. Deschler and N. C. Greenham, *Nat. Photonics*, 2021, **15**, 696-702.