Supporting Information

Self-Trapped Exciton Emission in Sn(II)-Doped All-Inorganic Zero-Dimensional Zinc Halide Perovskite Variant

Xiaoyu Wang,^a Qibin Shen,^a Yansong Chen,^a Nasir Ali, ^a Ziyang Ren,^a Gang Bi,^{b*}and

Huizhen Wu^{a*}

Affiliations:

^aZhejiang Province Key Laboratory of Quantum Technology and Devices and

Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang

University, Hangzhou, 310027, PR China

^bSchool of Information & Electrical Engineering, Zhejiang University City College,

Hangzhou, Zhejiang 310015, PR China

*Corresponding Author: big@zucc.edu.cn; hzwu@zju.edu.cn

Figure S1. PXRD patterns of the pristine and Sn(II)-doped Cs_2ZnCl_4 with different Zn/Sn feed ratio in synthesis.

Figure S2. Simulated PXRD patterns of the pristine Cs₂ZnCl₄.

Figure S3. The high-resolution XPS spectrum of Sn 3d of the Sn(II)-doped Cs₂ZnCl₄.

Figure S4. Absorption spectra for the pristine and Sn(II)-doped Cs₂ZnCl₄ crystals.

Figure S5. Temperature-dependent PL spectra of the Sn(II)-doped Cs_2ZnCl_4 . The temperature change interval is 20 K.

Figure S6. Partial charge densities of (a) VBM and (b) CBM at respective atomic sites for the Sn(II)-doped Cs₂ZnCl₄.