Electronic Supplementary Information

Isolation of the $Au_{145}(SR)_{60}X$ compound (R = *n*-butyl, *n*-pentyl; X

= Br, Cl): Novel gold nanoclusters that exhibit properties subtly

distinct from the ubiquitous icosahedral Au₁₄₄(SR)₆₀ compound

Tiziano Dainese, Sabrina Antonello, Sara Bonacchi, Daniel Morales-Martinez, Alfonso Venzo, David M. Black, M. Mozammel Hoque, Robert L. Whetten, and Flavio Maran

Table of Contents

- 1. Chemicals
- 2. Synthesis of $Au_{144}(SC_4H_9)_{60}$ and $Au_{144}(SC_5H_{11})_{60}$
- 3. Notes Regarding Mass Spectrometry
- 4. Figures S1-S17
- 5. Table S1

1. Chemicals. HAuCl₄·3H₂O (Sigma-Aldrich, 99.9%), tetra-*n*-octylammonium bromide (Sigma-Aldrich, 98%), *n*-butanethiol (Sigma-Aldrich, 99%), *n*-pentanethiol (Sigma-Aldrich, 98%), NaBH₄ (Sigma-Aldrich, 99%), tetrahydrofuran (THF, Sigma-Aldrich, 99.9%), toluene (Sigma-Aldrich, 99.7%), methanol (Sigma-Aldrich, 99.8%), acetone (Sigma-Aldrich, \geq 99.5%), acetonitrile (Carlo Erba RS), pentane (Sigma-Aldrich, 99.8%), methylcyclohexane (Sigma-Aldrich, 99%), isopentane (Sigma-Aldrich, \geq 99%), and benzene-*d*₆ (Sigma-Aldrich, 99.96%, *d*₆) were used as received. Tetra-*n*-butylammonium hexafluorophosphate (Fluka, 99%) was recrystallized from ethanol. For electrochemistry,

dichloromethane (DCM anhydrous, Sigma-Aldrich, ≥99.8%) was stored under an argon atmosphere. Low conductivity water was milliQ Water pro analysis (Merck). Column chromatography was carried out using silica gel from Macherey-Nagel (MN-Kieselgel 60 M, 230-400 mesh).

2. Synthesis of $Au_{144}(SC_4H_9)_{60}$ and $Au_{144}(SC_5H_{11})_{60}$. The synthesis of the Au_{144} clusters was performed following a literature procedure (H. Qian, R. Jin, *Chem. Mater.*, 2011, **23**, 2209–2217), with minor modifications. A typical synthesis is described for $Au_{144}(SC4)_{60}$. 0.50 g (1.27 mmol) of HAuCl₄·3H₂O was dissolved in 50 mL of methanol, and then 0.833 g of tetra-*n*-octylammonium bromide (1.52 mmol, 1.2 equiv) was added. The resulting red suspension was stirred for 30 min at 20 °C until complete dissolution of the reagents. The stirring speed was set to 100 rpm and 0.816 ml (7.62 mmol, 6 equiv) of butanethiol, dissolved in 10 mL methanol was added dropwise over a period of ~3 min. The solution quickly became a milky-white suspension. The stirring speed was increased to 600 rpm and a freshly prepared icy-cold aqueous solution (10 mL) of NaBH₄ (0.48 g, 12.7 mmol, 10 equiv) was quickly added to the reaction mixture. The suspension immediately became black and plenty of gas evolved. The reaction was stopped after ~12 h. The black precipitate was washed 3 times with methanol and 3 times with acetonitrile to fully remove the Au_{25} clusters. The purified product $Au_{144}(SC4)_{60}$ was finally extracted with pentane. The synthesis of $Au_{144}(SC5)_{60}$ was performed in the same way.

3. Further Notes Regarding Mass Spectrometry. We repeated certain measurements using a higher resolution (~20000:1) instrument, and could resolve the spectra with isotopic distribution (Figures S2, S5-7). The comparative abundance of ions attributable to the common byproducts - clusters of $Au_n(SR)_p$ composition (n,p) = (137,56), (130,50), (104,45), (38,24), and (25,18), all of which were readily detected in these instruments - were very low, no more than ~1% of the abundance of the main component. Figure S7 provides the assignment of the principal byproduct $Au_{137}(SC4)_{56}$, detected at a level of ~1% of the $Au_{145}(SC4)Cl_{\sim0.7}Br_{\sim0.3}$ sample, at isotopic resolution, with a distinctive

fragmentation pattern indicated. It is finally worth stressing that in all these analyses no instrumental separation (HPLC or trap-column insertion) has to be employed to remove small-molecule contaminants or to enhance the appearance of size-purity of the electrosprayed sample solutions.

In Figures S6-7, the experimental isotope pattern(s) of (145,60,X), (144,60), and (137,56) were shifted right to ~0.4 m/z for 3+, and ~0.3 m/z for 4+ of (144,60) to eliminate the offset due to imprecision in instrument calibration. The upper bounds on (145,60,X) from the ESI-MS results on C4 and C5 samples are limited to < 1% in comparison with (144,60) clusters. Also to be noted here, to obtain the isotopic resolution the samples were aggressively diluted, beyond what is described above, resulting in a minor trade-off in signal intensities (and hence S/N ratios). Also, thanks to this minor uncertainty (~ 1 Da) in calibration at the higher masses, one cannot rule out (or in) the presence of adventitious H⁺ (protonation).

4. Figures S1-S17.

Figure S1. Positive ion mode ESI-MS detection of $[Au_{144-5}(SC5)_{60}]^{3+}$. The top frame (red trace) showing the presence of $[Au_{145}(SC5)_{60}Br]^{3+}$. The bottom frame (blue trace) showing the presence of $[Au_{144}(SC5)_{60}]^{3+}$ along with other minor products identified, i.e., $[Au_{137}(SC5)_{56}]^{3+}$ and $[Au_{25}(SC5)_{18}]^{+}$.

Figures S2. Details of some of the ESI-MS signals observed after 1h. Insets show experimental (black) and simulated isotopic pattern (red or blue).

Figure S3. Time evolution of some of the ESI-MS peak intensities observed after 1, 2, 6, 20, and 30 h reaction. Intensities are normalized with respect to overall amount of $Au_{145}(SC4)_{60}X$.

Figure S4. In-source-collision-induced-dissociation pattern for charge states 3+ and 4+ (green), ranging m/z 6000-16000. The inset shows the fine structure of charge state 3+ (red) and 4+ (blue); the asterisk indicates the loss of (AuSR)₄ [mass of ligand SC4, S(CH₂)₃CH₃ = 89, and Au = 197] from the surface of the gold cluster Au₁₄₅(SC4)₆₀ due to a harsh environment of the MS source.

Figure S5. Isotopic pattern of $Au_{145}(SC4)_{60}X$, here X is Cl and Br. The red trace shows the pattern calculated from the formula $[Au_{145}(SC4)_{60}X]^{3+}$, whereas the blue traces show the experimental patterns of $[Au_{145}(SC4)_{60}X]^{3+}$.

Figure S6. Isotopic resolution of the peaks assigned to $Au_{144}(SC4)_{60}^{z^+}$ for z = 4+ (A) and 3+ (B). The red traces show the pattern calculated for $[Au_{144}(SC4)_{60}]^{4+}$ and $[Au_{144}(SC4)_{60}]^{3+}$. The blue traces show the experimental pattern for both charge states.

Figure S7. The presence of $Au_{137}(SC4)_X$, wherein x = 53 - 56, as a minor byproduct in the sample $Au_{145}(SC4)Cl_{-0.7}Br_{-0.3}$. The inset shows the isotopic pattern (in red) calculated for the composition of $[Au_{137}(SC4)_{56}]^{3+}$.

Figure S8. DPV curves for $Au_{145}(SC4)_{60}Br$ (a), $Au_{144}(SC4)_{60}$ (b), $Au_{144}(SC3)_{60}$ (c), and $Au_{144}(SC2)_{60}$ (d) in DCM/0.1 M TBAH at 20 °C on a microdisk glassy-carbon electrode.

Figure S9. DPV curves for 0.16 mM $Au_{144}(SC4)_{60}$ (black curve) and 0.15 mM $Au_{145}(SC4)_{60}Br$ (red curve) in DCM/0.1 M TBAH. The potential range is limited to the six central peaks. Microdisk glassy-carbon electrode, 20 °C.

Figure S10. TOCSY spectra of 0.1 mM $Au_{145}(SC4)_{60}Br$ (red) and 0.8 mM $Au_{144}(SC4)_{60}$ (black) in C₆D₆, 45° C.

Figure S11. TOCSY spectra of 0.1 mM $Au_{145}(SC4)_{60}Br$ (red) and 0.8 mM $Au_{144}(SC4)_{60}$ (black) in C₆D₆, 45° C. The range is limited to the methylene region.

Figure S12. Schematic illustration demonstrating how, in the (144,60) and (145,60,X)systems, the icosahedral symmetry of the 60 S-atom sites (60-fold equivalence) can be compatible with the 12 distinct R-group sites, or configurations, as required by the ¹H-NMR spectra. Each R-group is represented here as a light-colored sphere (at left) or equivalently by a hexagon (at right); each surface void-site (on the 6 five-fold symmetry axes) is indicated by a dark sphere (left) or pentagon (right). As depicted here, the 60 Rgroups are arrayed in five color-coded spirals (penta-helix) about a common five-fold axis, as mentioned just above, wherein each spiral comprises 12 distinct (nonequivalent) R-group configurations. The X-atom (halide) site is then logically positioned at the top (or bottom) where the five spirals converge. [Source: Inspired by the Nobel Symposium Lecture, "Viruslike Clusters of Atoms", by T. P. Martin, 2001]. The coordinates at left are taken from the DFT-optimized structure of the *I*-Au72 shell (or 'cage') structure. The coordinates for its 'dual' (at right) were taken from a database of fullerene structures, namely the chiral-icosahedral fullerene model for I-C140. Both models have chiralicosahedral (I-group) symmetry as established for the crystallography (and DFT predictions) of the $Au_{144}(SR)_{60}$ (z = 2+) systems.

Figure S13. Excitation-emission map of $Au_{145}(SC4)_{60}X$. Absorbance 0.5 at 400 nm, toluene, room temperature. Excitation wavelengths (in nm) are indicated in the legend.

Figure S14. Excitation-emission map of $Au_{25}(SC4)_{18}$. Absorbance 0.5 at 400 nm, toluene, room temperature. Excitation wavelengths (in nm) are indicated in the legend.

Figure S15. Absorbance (0.5 at 400 nm) of $Au_{145}(SC4)_{60}Br$ (blue), $Au_{25}(SC4)_{18}$ (red), and $Au_{144}(SC4)_{60}$ (black) in toluene at room temperature.

Figure S16. Luminescence intensity at 900 nm of $Au_{25}(SC4)_{18}$ in toluene obtained upon excitation at 400 nm (excitation and emission slit of 5 and 30 nm, respectively). The concentrations of the cluster (left to right) are: 0.65, 0.9, 1.3, 2.0, 2.7, 3.9, 5.7, 8.2, 9.7, 11, 13, 16, 19, 22, 26, 31, and 37 μ M.

Figure S17. Luminescence of 3.7×10^{-5} (black), 1.3×10^{-5} (green), and 6.5×10^{-7} M (red) Au₂₅(SC4)₁₈ in toluene obtained upon excitation at 400 nm (excitation and emission slit of 5 and 30 nm, respectively). The spectra are normalized with respect to the luminescence maximum.

Туре	α-CH ₂	Δδ	¹³ C	β -CH ₂	Δδ	¹³ C	γ -CH ₂	Δδ	¹³ C	δ -CH ₃	¹³ C
А	8.24	2.20	37.05 50.7	3.25	0.80	<i>43.3</i> <i>43.05</i>	2.08	0.08	22.78	0.952	12.87
	6.080 6.04	2.234	50.7	2.45	0.00	45.95	2.041	0.035	23.12	1.555	17.29
	5.736			2.44			1.988				
В	5.49	1.50	36.93	2.12	0.09	39.7	1.83	0.07	23.0	1.051	13.23
	7.841	2.876	42.1	2.293	0.041	44.33	2.026	0.025	24.6	1.220	14.94
	3.99			2.03			1.76				
	4.965			2.252			2.001				
С	5.49	0.89	37.1	2.13	0.07	36.9	1.85	0.07	21.6	1.055	13.25
	6.595	1.635	38.9	2.492	0.209	53.08	1.763	0.00	26.0	1.154	14.61
	4.60			2.06			1.78				
D	4.823	1.51	27.0	2.283	0.00	20.06	1.703	0.07	24.0	1.05(12.22
D	5.51 6.07	1.51	37.0	2.13	0.06	38.00	1.84		24.9	1.050	13.23
	4.00	1.1/2	42.1	2.274	0.000	47.29	1.217	0.00	24.10	1.000	14.04
	4.00			2.07			1.77				
E	3.86	0.41	51.61	1 94	0.04	38 57	1.217	0.02	213	1.058	12.87
-	5.835	2.256	44.6	2.392	0.064	49.09	1.805	0.066	24.40	1.058	14.66
	3.45			1.90			1.60				
	3.579			2.328			1.739				
F	4.60	0.57	36.8	2.11	0.01	40.0	1.80	0.08	24.8	1.067	13.25
	5.733	2.503	38.8	2.430	0.08	48.93	2.18	0.204	24.27	1.352	14.96
	4.03			2.10			1.72				
	3.23			2.35			1.976				
G	4.74	0.40	40.2	2.19	0.04	38.8	1.87	0.07	21.8	1.144	13.1
	5.619	1.559	54.7	2.145	0.205	42.56	1.842	0.063	23.01	1.070	14.55
	4.34			2.15			1.80				
	4.06	0.10	50.2	2.077	0.00	(2.2	1.779	0.06	21.5	1.01.4	12.2
н	6.40 4 727	0.12	<u>39.3</u> 20.7	2.26	0.23	42.2	2.00	0.06	21.5	1.214	13.3
	4.757	0.307	39.7	2.180	0.045	41.29	1.870	0.047	24.44	1.030	14.01
	J.04 1 376			2.25			1.820				
T	6.08	0.10	40.1	2.145	0.34	524	1.85	0.02	25.0	1 214	13.28
	4.573	0.598	39.8	2.206	0.119	40.65	1.829	0.091	24.37	1.083	14.81
	5.98			2.28			1.83				
	3.975			2.141			1.738				
J	7.68	2.77	40.81	2.29	0.04	40.71	2.02	0.03	21.53	1.223	13.33
	4.531	0.093	54.8	2.25	0.299	43.0	1.831	0.00	23.34	1.131	14.28
	4.91			2.25			1.99				
	4.438			2.195			1.831				
K	6.20	0.18	40.0	2.64	0.03	52.6	1.84	0.02	25.18	1.244	13.41
<u> </u>	3.94	0.461	37.6	1.951	0.03	40.14	1.63	0.02	22.41	1.080	14.77
	6.02 2.470			2.61			1.82				
L T	3.4/9 8 25	2 20	27.05	1.921	0.80	12 1	2.00	0.10	22.0	1 265	12 56
	0.23 4 727	2.29	43 5	3.24 2.106	0.00	45.4	2.09		23.0	1.303	13.30
	<u>−∠</u> 5.96	0.305	+5.5	2.190	0.030	70.4/	1 99	0.010	23.3	1.140	17.01
	4 344			2.158			1.842				
L	1.211	L	1	2.130	1	1	1.012	1	L	L	

5. Table S1. ¹H and ¹³C NMR data for $Au_{145}(SC4)_{60}Br$ (red) and $Au_{144}(SC4)_{60}$ (black) in C₆D₆ at 45 °C. ¹³C NMR values are in italics, whereas the δ differences between coupled proton signals ($\Delta\delta$) are in bold type. The letters mark the twelve distinct ligand types.