Supporting Information

Photoelectrochemical H₂ Evolution on WO₃/BiVO₄ Enabled by Single Crystalline TiO₂

Overlayer-Modulations

Eunoak Park^a, Santosh S. Patil^a, Hyeonkwon Lee^b, Vijay S Kumbhar^{c*}, Kiyoung Lee^{a*}

^aDepartment of Chemistry and Chemical Engineering, Inha University, 22212 Incheon, Republic of Korea

^bResearch Institute of Environmental Science & Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Republic of Korea

^cChemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University,

Japan

Figure S1. FE-SEM images of the WO₃/BiVO₄ heterostructure prepared at different cycling steps (a) 20 cycles, (b) 30 cycles, (c) 40 cycles, (d) 20 cycles with prior air annealing at 100°C for 5 min after 10 cycles.

Figure S2. XRD pattern of pristine BiVO₄.

Figure S3. XRD pattern of five-cycle spin-coated TiO_2 on $WO_3/BiVO_4$.

Figure S4. Tauc plot of WO₃, WO₃/BiVO₄ and WO₃/BiVO₄/TiO₂ photoelectrodes.

Figure S5. Linear sweep voltammetry curves of $WO_3/BiVO_4$, $WO_3/BiVO_4/TiO_2$ (anatase), and $WO_3/BiVO_4/TiO_2$ (amorphous) photoelectrodes.

Figure S6. Linear sweep voltammetry curves of $WO_3/BiVO_4/TiO_2$ (anatase) and $WO_3/BiVO_4/TiO_2$ (five cycles) photoelectrodes.

Table S1. Summ	ary of photostability	parameter comparison with	n state-of-the-art WO ₃ /BiVO ₄ -
----------------	-----------------------	---------------------------	---

related photoelectrodes

Electrode	Synthesis method	Initial J (mA/c m ²)	Final J (mA/c m ²)	Time	Electrolyte	Applied potential	Ref.
WO ₃ /BiVO ₄	WO₃: Spray coating BiVO₄: ED	1.1	0.6	2 h	0.1 M phosphate buffer with 1 M Na ₂ SO ₄	1.23 V vs. RHE	[1]
SnO ₂ /BiVO ₄ /TiO ₂	SnO ₂ , BiVO ₄ , TiO ₂ : Spin-coating	1.1	0.6	5 h	0.5 M phosphate buffer with H_2O_2	1 V vs. Pt	[2]
SnO ₂ /WO ₃ /BiVO ₄	SnO ₂ , WO ₃ : Electron-beam deposition BiVO₄: Drop casting	1.9	1.5	5 h	Phosphate buffer with 0.5 M Na ₂ SO ₃	1.23 V vs. RHE	[3]
WO₃/BiVO₄/ZnO	WO₃: Hydrothermal BiVO₄: Spin- coating ZnO: ALD	2.9	2.6	6 h	0.5 M Na ₂ SO ₄	1.23 V vs. RHE	[4]
TiO ₂ /WO ₃ /BiVO ₄	TiO2: ALD WO3, BiVO4: ED	3.1	2.4	5 h	0.5 M Na ₂ SO ₄ with 0.1M Na ₂ SO ₃	-	[5]
WO ₃ /BiVO ₄ /BiFe O ₃	WO₃, BiVO₄, BiFeO₃: Spin- coating	1.6	1.1	50 min	0.5 M Na ₂ SO ₄	1.5 V vs. RHE	[6]
WO₃/BiVO₄/(FeO OH/NiOOH)	WO ₃ : Hydro- deposition BiVO₄: Drop- casting FeOOH/NiOOH: Photodeposition	4.8	4.5	30 min	0.5 M Na ₂ SO ₄	1.23 V vs. RHE	[7]

SnO ₂ /BiVO ₄ /Co-	SnO ₂ : CVD	0.9	0.8	1 h	0.1M	1.23 V vs.	[8]	
Pi	BiVO ₄ , Co-Pi: ED				phosphate	RHE		
					buffer			

ED = Electrodeposition; ALD = Atomic layer deposition; CVD = Chemical vapor deposition

References:

[1] Coelho, D.; Gaudêncio, J. P. R. S.; Carminati, S. A.; Ribeiro, F. W. P.; Nogueira, A. F.; Mascaro, L. H., Bi Electrodeposition on WO_3 Photoanode to Improve the Photoactivity of the WO_3 /BiVO₄ Heterostructure to Water Splitting, *Chem. Eng. J.* **2020**, 399, 125836.

[2] Hwang, S. W.; Kim, J. U.; Baek, J. H.; Kalanur, S. S.; Jung, H. S.; Seo, H.; Cho, I. S., Solutionprocessed TiO₂/BiVO₄/SnO₂ Triple-layer Photoanode with Enhanced Photoelectrochemical Performance. *J. Alloys Compd.* **2019**, *785*, 1245-1252.

[3] Bhat, S. S. M.; Lee, S. A.; Suh, J. M.; Hong, S.; Jang, H. W., Triple Planar Heterojunction of $SnO_2/WO_3/BiVO_4$ with Enhanced Photoelectrochemical Performance under Front Illumination, *Appl. Sci.* **2018**, 8, 1765.

[4] Ma, Z.; Song, K.; Wang, L.; Gao, F.; Tang, B.; Hou, H.; Yang, W., WO₃/BiVO₄ Type-II Heterojunction Arrays Decorated with Oxygen-Deficient ZnO Passivation Layer: A Highly Efficient and Stable Photoanode. *ACS Appl. Mater. Interfaces* **2019**, *11* (1), 889-897.

[5] Pan, Q.; Zhang, H. F.; Yang, Y. P.; Cheng, C. W., 3D Brochosomes-Like TiO₂/WO₃/BiVO₄ Arrays as Photoanode for Photoelectrochemical Hydrogen Production, *Small* **2019**, 15, 1900924.

[6] Khoomortezaei, S.; Abdizadeh, H.; Golobostanfard, M. R., Triple Layer Heterojunction WO₃/BiVO₄/BiFeO₃ Porous Photoanode for Efficient Photoelectrochemical Water Splitting. *ACS Appl. Energy Mater.* **2019**, *2* (9), 6428-6439

[7] Jin, B.J.; Jung, E. J.; Ma M.; Kim, S. S. W.; Zhang, K.; Kim, J. I.; Son, Y. K.; Park, J. H., Solutionprocessed Yolk–shell-shaped WO₃/BiVO₄ Heterojunction Photoelectrodes for Efficient Solar Water Splitting, *J. Mater. Chem. A*, **2018**, 6, 2585-2592.

[8] Liu, J.C.; Li, J. M.; Shao, M. F.; Wei, M., Directed Synthesis of SnO₂@BiVO₄/Co-Pi Photoanode for Highly Efficient Photoelectrochemical Water Splitting and Urea Oxidation, *J. Mater. Chem. A*, **2019**, 7, 6327-6336.