Rearrangement of protein structures on a gold nanoparticle surface

is regulated by ligand adsorption modes †

Xiaofeng Wang,^{‡a} Rong Lei,^{‡b} Limei Li,^{‡a, c} Xinyu Fei,^c Rui Ju,^c Xiwen Sun,^c Huiying Cao,^c Qingfang Zhang,^{*,a} Chunying Chen,^{*, d} and Xinyi Wang^{*,a, c}

^a School of Life Science and Biotechnology, Dalian University, Dalian, 116622, China.

E-mail: wangxinyi163@163.com

^b Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.

^c College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China. E-mail: wangxinyi163@163.com

^d CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, &CAS Center for Excellence in Nanoscience, National Center for Nanoscienceand Technology of China, and University of Chinese Academy of Sciences, Beijing, 100190, China.

[†] Electronic supplementary information (ESI) available. Material characterization, Protein adsorption analysis by DLS, Measurement of proteion secondary structures by ART-FTIR, Thermodynamic measurements by fluorescence quenching, and Computer simulation of the conformational changes and energy levels at nano-protein interface are all included in ESI.

‡ These authors contributed equally to this work.

Corona	Techniques	References
parameter		
Thickness	Transmission electron microscopy (TEM) ¹⁻⁷ , Dynamic light	1-7, 14-21
	scattering (DLS) ^{1, 3, 5-14} , Field Flow Fractionation (FFF) ¹⁵ ,	
	Electrospray-Differential Mobility Analysis (ES-DMA) ¹⁶ ,	
	Fluorescence correlation spectroscopy (FCS) ¹⁷ , Small-angle	
	X-ray scattering (SAXS) ¹⁸⁻²⁰ , Fluorescence correlation	
	spectroscopy ²¹	
Density	UV–Vis spectrophotometry ^{1, 7, 12} , Scanning Electron	1, 7, 11, 12, 22
	Microscopy (SEM) ^{11, 22} , Atomic force microscopy (AFM) ²²	
Identity and	SDS-PAGE ^{2, 5, 7-9} , Liquid chromatography tandem mass	2,5,7-9, 10, 13,
quantity	spectrometry (LC-MS/MS) ^{5, 10, 13, 23, 24} , ESI-MS ²⁵	23-25
Conformation	CD spectroscopy ^{26, 27} , Polarization modulation-infrared	6,11,14,18,26-
	reflection-adsorption spectroscopy (PM-IRRAS) ⁶ ,	28
	Computational simulation ^{18, 28} , Fourier transform infrared	
	spectroscopy (FTIR) ^{27, 28} , X-ray photoelectron spectroscopy	
	(XPS) ¹¹ , Moleculardynamic (MD) simulation ¹⁴ , Attenuated	
	total reflection infrared spectroscopy(ART-IR) ¹⁴	
Affinity	Zeta potential ^{3, 11, 12, 23, 29} , MP-SPR ^{6, 22} , Isothermal titration	3,5,6,10-12,
	calorimetry (ITC) ⁵ , Electrophoretic light scattering (ELS) ¹⁰	22, 23, 29

Table S1. Methods and techniques for examining the structure and composition of protein corona.

Fig. S1. Representative TEM image of Cit-AuNPs. (a) The average diameter of seed particles was measured to be 20 ± 2.6 nm (n=100). (b) The average diameter of Cit-AuNPs was measured to be 45.4 ± 3.9 nm (n=100).

Fig. S2. The plasmon absorption spectra of AuNPs with various surface modifications.

Fig. S3. FT-IR spectra of Cit-AuNPs and GSH-modified AuNPsv(AuNP-GSH). The characteristic peaks of GSH appeared in the spectrum of AuNP-GSH, indicate the chemical modification of GSH onto the surface of AuNPs.

Fig. S4. Modified Stern-Volmer plots for the fluorescence quenching of three proteins by Cit-AuNPs or AuNP-GSH at different temperatures. The concentration of protein was fixed at 1.5μ M and the concentrations of various AuNPs were from 0 to 15 nM.

Fig. S5. Adsorption analysis of three plasma proteins onto Cit-AuNPs or AuNP-GSH. The hydrodynamic radius changes of Cit-AuNP@BSA (a), AuNP-GSH@BSA (b), Cit-AuNP@FIB (c), AuNP-GSH@ FIB (d), Cit-AuNP@IgG (e) and AuNP-GSH@ IgG (f), were plotted as a function of the corresponding concentrations of proteins, respectively. The final concentrations of all AuNPs (45 nm) were fixed at 1.5 nmol/L, and the DLS measurement was performed after incubating AuNPs with the desired concentrations of plasma proteins for 2 h at room temperature. The curves were fitted based on the Hill equation (red solid lines), and the best-fit parameters are listed on the right. All data are the mean±SD of three replicates.

Fig. S6. ART-FTIR analysis of secondary structures of adsorbed plasma proteins on AuNPs with ligand-physisorbed or chemisorbed surfaces. Curve-fitted inverted SD and curve-fitted inverted FSD of amide I spectra were selected as the interest region for studying secondary structures of adsorbed proteins. The curve fitting was implemented by the OMNIC software (http://www.thermoscientific.com/en/ products/fourier-transform-infrared-spectroscopy-ftir.html).

Fig. S7 ATR-IR spectra of Cit-AuNPs, purified Cit-AuNPs, and the Cit-AuNPs after incubating with excess proteins (BSA, IgG and FIB) at the frequency region of $v_{sy}(COO-)$ and $v_{asy}(COO-)$ vibrations. The peaks of $v_{sy}(COO-)$ at ~1590 cm⁻¹ and $v_{asy}(COO-)$ at ~1390 cm⁻¹ disappear upon the addition of the proteins (arrowed), indicating the replacement of citrates by the adsorbed proteins on the nanosurface.

Dustain	Mathad		Secondary structures (%)				
Protein	Method	α-helix	β-sheet	β-turn	other		
	X-ray ^a	74.9	3.1	1.4	20.6		
BSA	FSD ^b	61.0±2.0	13.8±1.5	17.3±0.5	$7.8{\pm}0.5$		
	SD ^c	60.3±1.4	14.3±2.0	18.5±3.2	7.0±1.6		
	FSD ^b	52.6±3.2	21.5±1.6	18.2±2.3	7.7±3.6		
CII-AUNPS@DSA	SD ^c	53.1±2.6	22.7±8.1	17.8±5.1	6.3±2.1		
ANNID COLLODGA	FSD ^b	57.4±2.4	19.5±1.3	17.0±0.6	6.2±3.4		
Aunp-GSH@BSA	SD ^c	58.2±2.3	18.9 ± 1.8	15.0±2.3	7.9±1.1		
	X-ray ^a	\	\	\	\		
FIB	FSD ^b	35.5±2.5	35.4±2.1	13.5±0.3	15.6±3.5		
	SD ^c	35.1±2.3	36.8±1.0	15.8±1.4	12.4 ± 4.0		
	FSD ^b	27.1±2.3	39.1±1.8	18.2±3.5	15.6±2.9		
CII-AUNPS@FIB	SD ^c	27.1±0.9	42.1±0.6	23.7±1.8	7.1±1.4		
ANNID CSH@EID	FSD ^b	31.6±1.9	36.8±1.6	13.3±1.7	18.3 ± 0.6		
Aunr-OSn@Fib	SD ^c	31.8±1.7	37.7±1.3	15.0±1.2	17.5 ± 1.5		
	X-ray ^a	\	\	\	\		
IgG	FSD^{b}	14.3±1.3	42.4±1.4	29.9±2.3	13.4±1.3		
	SD ^c	14.5±0.4	43.7±2.1	28.5±3.7	13.3±2.5		
Cit AuNDo@LeC	FSD ^b	8.8±2.2	47.2±3.1	28.1±3.1	15.9 ± 4.0		
Cit-Aunrs@igG	SD ^c	7.8±1.6	47.5±2.2	27.2±2.2	17.6 ± 0.7		
ANNE CSU@IaC	FSD ^b	12.6±3.1	44.6 ± 0.8	28.0±2.3	14.8 ± 1.1		
Aunr-Osn@igO	SD ^c	12.2±1.1	45.8±3.1	31.4±3.1	10.6 ± 1.1		

Table S2. Percentage distributions of secondary structures of proteins before and after interaction with Cit-AuNPs or AuNP-GSH as determined by FTIR spectroscopy.

^aData from X-ray structure; ^bData from second-derivative FTIR analysis; ^cData from Fourier self-deconvolution FTIR analysis.

Mean	Secondary
frequencies(cm ⁻¹)	structures
$1,624 \pm 1.0$	β-sheet
$1,627 \pm 2.0$	β-sheet
$1,633 \pm 2.0$	β-sheet
$1,638 \pm 2.0$	β-sheet
$1,642 \pm 1.0$	β-sheet
$1,648 \pm 2.0$	Random
$1,656 \pm 2.0$	α-helix
$1,663 \pm 3.0$	3 ₁₀ -helix
$1,667 \pm 1.0$	β-turn
$1,675 \pm 1.0$	β-turn
$1,680 \pm 2.0$	β-turn
$1,685 \pm 2.0$	β-turn
$1,691 \pm 2.0$	β-sheet
$1,696 \pm 2.0$	β-sheet

Table S3. Assignment of amide I band frequencies to secondary structure of protein.

Protein	On	Cit-AuNP	On AuNP-GSH		
	Param1 (kJ/mol)	Param2 (kJ/mol)	Param1 (kJ/mol)	Param2 (kJ/mol)	
BSA	-4365.02±96.26	-8672.37±87.18007	-538.70±109.10	-991.45±174.88	
FIB	-7921.27±119.16	-14025.62±494.35	-2510.01±275.34	-3431.85±221.11	
IgG	-5196.66±105.08	-12642.40±224.3	-1292.17±127.91	-1643.63±407.77	

Table S4. The interaction energy at nano-protein interface.

Table S5. Changes in the internal energy of protein at nano-protein interface.

Protein	Eros protoin	On Cit-AuNP		On AuNP-GSH	
	(kJ/mol)	Param1	Param2	Param1	Param2
		(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)
BSA	$\textbf{-76343.9} \pm$	-88037.4 \pm	$\textbf{-86475.6} \pm$	-77594.9 \pm	-77220.1 \pm
	291.4	364.6	331.5	382.8	435.8
FIB	-133984.3 \pm	-135616.6 \pm	-133341.6 \pm	-135462.3 \pm	$\textbf{-135145.6} \pm$
	340.9	640.9	835.9	379.1	470.1
IgG	-134535.7	-136766.8 \pm	-132995.9 \pm	-136284.6 \pm	$\textbf{-135873.1} \pm$
	±415.3	599.1	395.2	487.8	367.8

Protein	Free protein	On Cit-AuNP		On AuNP-GSH	
		Param1	Param2	Param1	Param2
BSA	326.0 ± 4.5	374.4 ± 8.4	336.8 ± 10.2	348.9 ± 12.1	340.2 ± 11.3
FIB	543.9 ± 13.4	584.0 ± 15.0	547.5 ± 18.8	555.0 ± 13.9	558.5 ± 14.8
IgG	589.8 ± 16.7	619.8 ± 20.6	571.2 ± 16.0	606.6 ± 15.2	611.4 ± 16.8

Table S6. Changes in the H-bond amount of protein at nano-protein interface.

Table S7. Changes in the salt-bridge amount of protein at nano-protein interface.

Protein	Free protein	On Cit-AuNP		On AuNP-GSH	
		Param1	Param2	Param1	Param2
BSA	66.1 ± 6.1	80.9 ± 6.6	74.1 ± 5.2	75.6 ± 6.8	75.4 ± 6.7
FIB	92.0 ± 6.2	109.8 ± 7.2	89.8 ± 6.7	109.5 ± 7.0	110.8 ± 7.1
IgG	71.9 ± 16.8	77.6 ± 6.2	67.8 ± 5.2	74.8 ± 7.6	64.2 ± 6.2

Na	On Cit-AuNP		On AuNP-GSH		
INO.	FIB	IgG	FIB	IgG	
1	ChainB-ASN411-	ChainA-GLN16-	ChainB-CYS65-	ChainA-ASN173-	
	MainChainB-	SideChainA-	MainChainB-	SideChainB-	
	VAL436-Main	SER13-Side	LEU75-Main	PRO171-Main	
2	ChainB-ASP69-	ChainA-ILE140-	ChainB-ILE203-	ChainA-GLU136-	
	MainChainB-	MainChainA-	MainChainC-	MainChainA-	
	HIS67-Side	ALA178-Main	LEU218-Main	LEU182-Main	
3	ChainB-GLY274-	ChainA-LEU4-	ChainC-GLY188-	ChainA-ILE140-	
	MainChainC-	MainChainA-	MainChainC-	MainChainA-	
	GLN136-Main	PHE101-Main	ASP185-Main	ALA178-Main	
4	ChainB-THR280-	ChainA-THR118-	ChainC-VAL143-	ChainA-LEU182-	
	MainChainB-	MainChainA-	MainChainC-	MainChainA-	
	TYR285-Main	SER141-Main	ASP141-Side	GLU136-Main	
5	ChainB-VAL436-	ChainA-THR165-	ChainB-ILE227-	ChainA-LEU184-	
	MainChainB-	SideChainA-	MainChainB-	MainChainA-	
	ASN411-Main	SER179-Main	TYR236-Main	ALA134-Main	
6	ChainC-GLY188-	ChainB-ALA141-	ChainB-SER222-	ChainA-LEU4-	
	MainChainC-	MainChainB-	SideChainB-	MainChainA-	
	ASP185-Main	SER131-Main	MET242-Main	PHE101-Main	
7	ChainC-THR224-	ChainB-ALA363-	ChainB-ASN254-	ChainA-SER180-	
	SideChainC-	MainChainB-	MainChainB-	SideChainA-	
	HIS217-Main	MET413-Main	GLU291-Main	SER179-Main	
8	ChainA-THR107-	ChainB-ARG40-	ChainB-MET450-	ChainA-SER183-	
	MainChainA-	MainChainB-	MainChainB-	MainChainA-	
	ASN103-Main	GLU48-Main	ARG255-Main	GLY162-Main	
9	ChainB-LEU302-	ChainB-HIS414-	ChainB-SER446-	ChainA-SER69-	
	MainChainB-	SideChainB-	SideChainB-	MainChainA-	
	LYS298-Main	ASP361-Main	TYR417-Main	THR72-Main	
10	ChainC-ASP285-	ChainB-ILE321-		ChainA-THR118-	
	MainChainC-	MainChainB-		MainChainA-	
	THR259-Main	TYR304-Main		SER141-Main	
11	ChainC-VAL122-	ChainB-ILE362-		ChainB-ALA172-	
	MainChainC-	MainChainB-		MainChainB-	
	ASN118-Main	SER360-Main		GLN109-Side	
12		ChainB-LEU84-		ChainB-ASN62-	
		MainChainB-		SideChainB-	
		LEU18-Main		TRP49-Main	
13		ChainB-LYS210-		ChainB-ASP386-	
		SideChainB-		MainChainB-	
		ASN208-Main		ASP384-Side	

Table S8. MD simulating the formation of β -sheet structure of three proteins at nanoprotein interface.

14	ChainB-SER184-	ChainB-ASP386-
	SideChainB-	SideChainB-
	THR169-Side	SER388-Side
15	ChainB-SER207-	ChainB-LYS210-
	SideChainB-	SideChainD-
	HIS204-Side	ASP212-Main
16	ChainB-THR379-	ChainD-THR21-
	MainChainB-	MainChainD-
	TYR392-Main	SER7-Main
17	ChainD-ASN62-	ChainB-THR284-
	MainChainD-	SideChainB-
	ILE50-Main	SER283-Main
18	ChainB-VAL185-	ChainB-TYR281-
	MainChainB-	MainChainB-
	HIS168-Main	THR284-Main
19	ChainB-VAL269-	ChainB-TYR281-
	MainChainB-	MainChainB-
	TRP262-Main	THR284-Main
20	ChainC-LEU139-	ChainC-LEU139-
	MainChainC-	MainChainC-
	THR120-Main	THR120-Main
21	ChainC-LEU184-	ChainC-THR105-
	MainChainC-	SideChainC-
	ALA134-Main	PRO7-Main
22	ChainC-THR166-	ChainD-GLN371-
	MainChainC-	SideChainD-
	SER179-Main	GLU373-Side
23	ChainC-TYR195-	ChainD-ILE53-
	MainChainC-	MainChainD-
	ALA211-Main	TRP36-Main
24	ChainD-GLN152-	ChainD-LEU112-
	SideChainD-	MainChainD-
	LEU112-Main	GLN152-Main
25	ChainD-THR135-	
	SideChainD-	
	THR139-Main	
26	ChainD-THR139-	
	SideChainB-	
	PRO276-Main	

1			
Parameters	BSA	FIB	IgG
Disulfide bond	17	11	12
H-bond	326	544	590
Salt-bridge	63	92	72
Hydrophobic	52	88	105
aa	583	956	1288

Table S9. The number of disulfide bond, H-bond, salt-bridge and hydrophobic interaction of each protein.

References

- C. Rodriguez-Quijada, H. de Puig, M. Sanchez-Purra, C. Yelleswarapu, J. J. Evans, J. P. Celli and K. Hamad-Schifferli, *ACS Appl. Mater. Inter.*, 2019, **11**, 14588-14596.
- 2 M. Hadjidemetriou, Z. Al-Ahmady, M. Mazza, R. F. Collins, K. Dawson and K. Kostarelos, *Acs Nano*, 2015, **9**, 8142-8156.
- 3 A. Cox, P. Andreozzi, R. Dal Magro, F. Fiordaliso, A. Corbelli, L. Talamini, C. Chinello, F. Raimondo, F. Magni, M. Tringali, S. Krol, P. J. Silva, F. Stellacci, M. Masserini and F. Re, *Acs Nano*, 2018, **12**, 7292-7300.
- 4 Z. Ban, P. Yuan, F. Yu, T. Peng, Q. Zhou and X. Hu, *Proc. Natl. Acad. Sci. U.S.A.*, 2020, **117**, 10492-10499.
- 5 J. Simon, L. K. Mueller, M. Kokkinopoulou, I. Lieberwirth, S. Morsbach, K. Landfester and V. Mailaender, *Nanoscale*, 2018, **10**, 10731-10739.
- 6 O. K. Kari, J. Ndika, P. Parkkila, A. Louna, T. Lajunen, A. Puustinen, T. Viitala, H. Alenius and A. Urtti, *Nanoscale*, 2020, **12**, 1728-1741.
- G. Maiorano, S. Sabella, B. Sorce, V. Brunetti, M. A. Malvindi, R. Cingolani and P. P. Pompa, *Acs Nano*, 2010, 4, 7481-7491.
- 8 K. Yang, B. Mesquita, P. Horvatovich and A. Salvati, *Acta Biomater.*, 2020, **106**, 314-327.
- 9 V. Francia, K. Yang, S. Deville, C. Reker-Smit, I. Nelissen and A. Salvati, *Acs Nano*, 2019, **13**, 11107-11121.
- S. Palchetti, V. Colapicchioni, L. Digiacomo, G. Caracciolo, D. Pozzi, A. L. Capriotti, G. La Barbera and A. Lagana, *BBA-Biomembranes*, 2016, 1858, 189-196.
- 11 S. Staufenbiel, M. Merino, W. Li, M.-D. Huang, S. Baudis, A. Lendlein, R. H. Mueller and C. Wischke, *Int. J. Pharmaceut.*, 2015, 485, 87-96.

- 12 F. Xu, M. Reiser, X. Yu, S. Gummuluru, L. Wetzler and B. M. Reinhard, *Acs Nano*, 2016, **10**, 1189-1200.
- 13 V. Gorshkov, J. A. Bubis, E. M. Solovyeva, M. V. Gorshkov and F. Kjeldsen, *Environ. Sci-Nano*, 2019, 6, 1089-1098.
- 14 X. Wang, X. Wang, M. Wang, D. Zhang, Q. Yang, T. Liu, R. Lei, S. Zhu, Y. Zhao and C. Chen, *Small*, 2018, 14.
- 15 J. Ashby, S. Schachermeyer, S. Pan and W. Zhong, *Anal. Chem.*, 2013, **85**, 7494-7501.
- 16 J.-T. Tai, C.-S. Lai, H.-C. Ho, Y.-S. Yeh, H.-F. Wang, R.-M. Ho and D.-H. Tsai, *Langmuir*, 2014, **30**, 12755-12764.
- 17 C. Roecker, M. Poetzl, F. Zhang, W. J. Parak and G. U. Nienhaus, *Nat. Nanotechnol.*, 2009, 4, 577-580.
- 18 T. Matsuo, Biochem. Bioph. Res. Co., 2020, 525, 830-835.
- 19 H. D. T. Mertens and D. I. Svergun, J. Struct. Biol., 2010, 172, 128-141.
- 20 P. Bernado and D. I. Svergun, Mol. Biosyst., 2012, 8, 151-167.
- 21 Z. Zeng, X. Shi, T. Mabe, S. Christie, G. Gilmore, A. W. Smith and J. Wei, *Anal. Chem.*, 2017, **89**, 5221-5229.
- 22 D. Maiolo, L. Paolini, G. Di Noto, A. Zendrini, D. Berti, P. Bergese and D. Ricotta, *Anal. Chem.*, 2015, **87**, 4168-4176.
- 23 K. Saha, M. Rahimi, M. Yazdani, S. T. Kim, D. F. Moyano, S. Hou, R. Das, R. Mout, F. Rezaee, M. Mahmoudi and V. M. Rotello, *Acs Nano*, 2016, 10, 4421-4430.
- A. J. Chetwynd, W. Zhang, J. A. Thorn, I. Lynch and R. Ramautar, *Small*, 2020, 16.
- 25 H. Zhang, T. Wu, W. Yu, S. Ruan, Q. He and H. Gao, *ACS Appl. Mater. Inter.*, 2018, **10**, 9094-9103.
- 26 S. Kihara, N. J. van der Heijden, C. K. Seal, J. P. Mata, A. E. Whitten, I. Koper and D. J. McGillivray, *Bioconjugate Chem.*, 2019, **30**, 1067-1076.
- 27 X. Wang, M. Wang, R. Lei, S. F. Zhu, Y. Zhao and C. Chen, *ACS nano*, 2017, **11**, 4606-4616.
- 28 F. Tavanti, A. Pedone and M. C. Menziani, Int. J. Mol. Sci., 2019, 20.
- 29 J. Saavedra, S. Stoll and V. I. Slaveykova, Environ. Pollut., 2019, 252, 715-722.