Supporting Information of

Ni(NCS)₂ monolayer: a robust bipolar magnetic semiconductor

Yaxuan Wu, ^a Wei Sun, ^a Siyuan Liu, ^a Bing Wang,^{a,‡} Chang Liu,^{a,‡} Huabing Yin,^{a,‡} Zhenxiang Cheng, ^{b,‡}

^aInstitute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng, People's Republic of China

^bInstitute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation

* Corresponding Author Email: wb@henu.edu.cn; cliu@vip.henu.edu.cn; yhb@henu.edu.cn; cheng@uow.edu.au

1. Variation of magnetic moment and energy difference with U value

Figure S1 The changes of magnetic moment (a) and energy difference of U (b) in the range 1-7 respectively.

Only using the method of PBE will ignore some interrelated effects of electrons. Especially for transition metal elements, which have 3d orbits, the method of Hubbard Coulomb interaction U should be deemed to improve the accuracy of calculation. So, the Ni atom, in the calculation process, adopts the method of PBE+U to deal with the strongly correlated system. In order to better find out the appropriate U, we also tested the U theoretically. The Ni(NCS)₂ monolayer maintains the ferromagnetic ground state regardless of how the U value is varied from 1 to 7. The magnetic moment on single Ni increases linearly with the increase of U value (as shown in Figure S1a). Not only that, but the variation of E with U is also interesting. When U value is between 1 and 4, the value of E decreases rapidly; as U exceeds 4 and increases, E value decreases gradually, and finally the curve tends to be smooth (as shown in Figure S1b). Therefore, we decide to use U = 4 to calculate the properties of the Ni(NCS)₂ monolayer. Besides, the lattice parameters of bulk after relaxation (under $U_{\text{eff}} = 4 \text{ eV}$) is a = 10.6115 Å, b = 3.6728 Å, c = 6.1614 Å, respectively, which in good agreement with the experimental values (a = 10.5070 Å, b = 3.6189 Å, c = 6.1625 Å)¹. Therefore $U_{\text{eff}} = 4.0 \text{ eV}$ is adopted within the GGA+U calculations.

2. The detailed structural information of bulk and monolayer $Ni(NCS)_2$ after relaxation.

The POSCAR of bulk Ni ₂ C ₄ S ₄ N ₄		
1.0	0.0000000000000000000000000000000000000	0.0106287400222404
0.0000000000000000000000000000000000000	2 6728540254677425	0.0190387409333494
1 7102150778450240	0.0000000000000000000000000000000000000	6 3864250467001405
-1./102130//6430249	0.0000000000000000000000000000000000000	0.3804230407001493
$\frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4}$		
2 + + + Direct		
	0.0000000000000000000000000000000000000	0.00000000000000000
0.5000000000000000000000000000000000000	0.5000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.7638007610075661	0.0000000000000000000000000000000000000	0.1977532968400766
0.7361997389974339	0.5000000000000000000000000000000000000	0.8022466731599280
0.2638007610075661	0.5000000000000000000000000000000000000	0 1977532968400766
0.2361992249924398	0.0000000000000000000000000000000000000	0.8022466731599280
0.8823548581731515	0.5000000000000000000000000000000000000	0.7630816523888697
0.6176451418268485	0.0000000000000000000000000000000000000	0.2369183176111349
0 3823548581731515	0.0000000000000000000000000000000000000	0.7630816523888697
0 1176451418268485	0.500000000000000000	0 2369183176111349
0.8646660479561135	0.0000000000000000000000000000000000000	0 1535597731076734
0.6353339520438865	0.500000000000000000	0.8464402268923266
0.3646660479561135	0.50000000000000000	0.1535597731076734
0.1353339520438865	0.00000000000000000	0.8464402268923266
The POSCAR of monolay	$\operatorname{ver} N_{12}C_4S_4N_4$	
1.0	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
10.490432881353781	0.00000000000000000	0.0000000000000000000000000000000000000
0.00000000000000000	3./19/955245153338	
0.000000000000000000000000000000000000	0.0000000000000000000000000000000000000	30.000000000000000000000000000000000000
$\frac{1}{2}$		
2444 Direct		
	0.0000000000000000000000000000000000000	0 6250400780000078
0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.02394997899999978
0.8301252520022050	0.0000000000000000000000000000000000000	0.02394997899999978
0.8591252520022050	0.0000000000000000000000000000000000000	0.6587002546726625
0.5591252520022050	0.0000000000000000000000000000000000000	0.0387005340750023
0.1008/4/3399/8009	0.0000000000000000000000000000000000000	0.5951890495205409
0.5755375630262501	0.0000000000000000000000000000000000000	0.5751670495205409
0.0755375850262530	0.0000000000000000000000000000000000000	0.6765773135955300
0.0755575850202559	0.0000000000000000000000000000000000000	0.5753126804044608
0.9244624369737409	0.5000000000000000000000000000000000000	0 5753126894044698
0.7244024309737409		0.6666363018586504
0.7294223001429373	0.5000000000000000000000000000000000000	0 6666363018586594
0 2705776118570427	0.0000000000000000000000000000000000000	0 5852537021413369
0.7705776110570427	0.500000000000000000000000000000000000	0 5953537031412260
0.//03//01183/042/	0.0000000000000000000000000000000000000	0.303233/021413309

3. The different magnetic configurations of ferromagnetic (FM) and antiferromagnetic (AFM) for Ni(NCS)₂ monolayer.

Figure S2 The different magnetic configurations of Ni(NCS)₂ monolayer

Based on the calculated total energies of different magnetic configurations (Figure S2) and normalized S(|S| = 1), the exchange parameters J_1 and J_2 can be derived by following equations: $E_{EM} = E_0 - (J_1 + 2J_2)|S|^2 - A|S|^2$ (1)

$$E_{AFM1} = E_0 - (-J_1)|S|^2 - A|S|^2 \quad (3)$$
$$E_{AFM2} = E_0 - (J_1 - 2J_2)|S|^2 - A|S|^2 \quad (3)$$

 E_0 is the total energy excluding the magnetic coupling (not sensitive to different magnetic states). For, anisotropy energy parameter A, spin-orbital coupling (SOC) calculations are performed on 2D Ni(NCS)₂ monolayer crystal to obtain the relative stability along three magnetization directions in plane, that is (100), (010), and (001) direction. A is calculated to be -415 μeV by using the magnetic anisotropy energies as below:

$$A = \frac{E(100) - E(001)}{|S|^2}$$

4. The Poisson's ratio (v) and the in-plane Young's modulus

Figure S3 Calculated orientation-dependent Poisson's ratio (a), and Young's modulus (b).

The Poisson's ratio and the in-plane Young's modulus can represent the elastic properties of 2D materials, which were plotted based on the calculated elastic constants (Figure S3). The calculated the Poisson's ratios along x- and y-axis for the Ni(NCS)₂ monolayer are 0.30 and 0.082, respectively, suggesting its high anisotropy in space. For Young's modulus of Ni(NCS)₂ monolayer the maximum value is 85.9 N/m along x-axis, which is comparable with that of silicene

(61 N/m) and a litter lower than that of MoS_2 monolayer (123 N/m). The result also reveals strong anisotropy of Ni(NCS)₂ monolayer.

5. Electronic structure of Ni(NCS)₂ monolayer.

Figure S4 The orbital-projected density of states of the Ni_d orbit calculated under the PBE+U(a) and HSE06 (b) methods. The orbital-projected density of states of the t_{2g} orbit and e_g orbit calculated under the PBE+U(c) and HSE06 (d) methods.

Figure S5 (a) The spin charge density distribution of $Ni(NCS)_2$ monolayer with the isosurface value of 0.002 e/bohr³. Yellow represents spin-up and blue represents spin-down. (b) Octahedral crystal of hex-coordinated Ni atom.

6. Under the applied strain and doping, the magnetic moment change and band structures of Ni(NCS)₂ monolayer.

Figure S6 Band structure of Ni(NCS)₂ monolayer under compressive strain.

Figure S7 Band structure of Ni(NCS)₂ monolayer under tensile strain.

Figure S6 shows that the band gap becomes smaller with the application of a stretching -1% to -3% compressive strain whether it is uniaxial or biaxial compressive strains. Figure S7 demonstrates that a larger band gap can be obtained with tensile strain and the band gaps increases as the tensile strain increases (from 1% to 3%). This result shows tunable band gaps of Ni(NCS)₂ monolayer.

Figure S8 Changes of magnetic moment under different strain (x-axis (a), y-axis (b), and xy-axis (c)) and doping (d).

Figure S9 Band structures of doping with two holes (a), one hole (b), two electrons (c), and one electron (d), respectively.

References

E. N. Bassey, J. A. M. Paddison, E. N. Keyzer, J. Lee, P. Manuel, I. da Silva, S. E. Dutton, C.
P. Grey and M. J. Cliffe, *Inorg Chem*, 2020, **59**, 11627-11639.