Large Dielectric Switch Effect Induced by An Order-Disorder Transformation in Cyclopropylamine Perchlorate Crystal

Electronic supplementary information

Gao Zhang-Ran, Wu Yu-Ying, Jiao Shu-lin, Tang Zheng, Sun Xiao-Fan, Li Dong,

Hong-Ling Cai *, and X. S. Wu.

National Laboratory of Solid-State Microstructures & School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.

AUTHOR INFORMATION

Corresponding Author

*(H.-L.C.) E-mail: hlcai@nju.edu.cn.

Fig. S1 The polarization vs electric field (P-E) of the CPA-ClO₄ poly-crystalline pressed pellets at 170K(LTP).

Fig. S2 The polarization vs electric field (P-E) of the CPA-ClO₄ poly-crystalline pressed pellets at 300K(HTP).

Fig. S3 The real part of dielectric constant of the CPA-ClO₄ polycrystal pressed pellets during the cooling process with linear ordinate.

Fig. S4 The real part of dielectric constant of the CPA-ClO₄ polycrystal pressed pellets during the heating process with linear ordinate.

Fig. S5 The dielectric loss of the $CPA-ClO_4$ polycrystal pressed pellets during the cooling process.

Fig. S6 The dielectric loss of the CPA-ClO₄ polycrystal pressed pellets during the heating process.

Fig. S7 The UV–visible absorption spectroscopy of CPA-ClO₄ polycrystal.

Fig. S8 $(\alpha h\nu)^{1/n}$ vs photon energy calculated by the Tauc's rule: $\alpha h\nu = A(h\nu - E_g)^n$, (n = 2 for indirect band-gap, n = 1/2 for direct band-gap), where α , ν , A, and E_g are absorption coefficient, light frequency, proportionality constant and band gap energy, respectively.

Fig. S9 The calculated band-gap of the CPA-ClO₄ crystal based on the structure at 195K.