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The authors regret that the production code used for plots in the electronic supplementary information 

contained an error in the calculation of oscillator strengths. As such, the production code has been 
updated in the accompanying .zip folder, and Figures S3 and S4 have been updated as displayed herein. 
The previous versions of these Figures and captions are displayed immediately below for future reference 

of the reader. A summary of the changes to the Figures is as follows: 

 

• Fig S3: Colors of some points in the Fz=1 plots (middle row in the figure) were previously 
incorrect and subsequently updated. 

• Fig S4: Oscillator strength line plots in panels (d) and (h) were incorrect and subsequently 
updated. Caption has been modified as panel (d) in the figure is qualitatively different when 
corrected. 
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Figure S-3. Energy levels of confined wavefunctions as a function of disk radius R (as in Figure 3)

but without the LR exchange corrections. Rows are Fz = 0 (top), Fz = 1 (middle), and Fz = 2

(bottom), and columns are without and with internal Rashba from the left. The total oscillator

strength f of the states as given by Eq. (26) is indicated by the color of the points. The results

are qualitatively very similar to Figure 3. The avoided crossings can be seen more easily in this

version, since the LR contribution is not included self-consistently in the wavefunctions.
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Figure S-4. Comparison of same-sign and opposite-sign cases for small QDs. Panels (a-d) use the

opposite sign for αe and αh (as is assumed elsewhere in the paper) while panels (e-h) use the same

sign. (a) and (e) show the dispersion. (b) and (f) show the energy levels (neglecting LR exchange)

for small QDs as a function of 1/R2 . As expected, we see four parallel lines (dark and bright Fz =

0 , two degenerate Fz = ±1 ) with the dark and bright Fz = 0 states switching position between

the cases. The energies approach the results from perturbation theory, which are shown by lines

and described by EFz(R) = ~2(2.405)2

2MR2 − 2ACOM
r (Ee

r +Eh
r ) +EFzexch , where the first term represents

COM confinement, the second term is an overall shift due to COM Rashba terms in Eq. 2, and the

exchange terms EFzexch represent the sum of SR exchange and Rashba internal motion terms. The

exchange terms are given by EFz=1
exch = w cos2 θ , EFz=0, bright

exch = 2w sin2 θ − 4(ACOM
r − AREL

r )ER ,

and EFz=0, dark
exch = 4(ACOM

r − AREL
r )ER . ACOM

r ≈ 0.48 is the COM Rashba coefficient [9] and

AREL
r ≈ 0.292 is the relative Rashba coefficient. Oscillator strengths (OS) are shown as a function

of R in panels (c, d, g, h). In the opposite-sign case, OS of the Fz = 0 bright state (c) and

Fz = ±1 bright state (d) are monotonically increasing with R . In the same-sign case, the OS of

the Fz = 0 bright state (g) and Fz = ±1 bright state (h) show peaks at intermediate R and go to

zero in both the R → 0 limit (as expected from the perturbative treatment [9]) and the R →∞

limit (due to the indirect nature of the bulk dispersion).
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I. RASHBA EXCITON DISPERSION

The transformation from the electron-hole pair basis from Refs. 1–3 to the angular mo-

mentum basis |J, Jz〉 basis we used for the effective Rashba exchange, Q̃ = 〈P |J, Jz〉 , can

be written by direct inspection:

Q̃ =


0 1 0 0

− 1√
2

0 1√
2

0

1√
2

0 1√
2

0

0 0 0 1

 . (S1)

The eigenvectors of Eq. (15) given in Eq. (17) involve c coefficients which are given by:

c±1(K) = −
(Et − Ez)∓

√
4(α+

ex)2K2 + (Et − Ez)2

2α+
exK

(S2)

c0±(K) =
(Et − Ed)∓

√
4(α−ex)2K2 + (Ed − Et)2

2α−exK
. (S3)

The four independent momenta K1± and K0± found by solving Eq. (16) for a given

exciton energy E are:

~2K2
1± =2M

(
E − E0,0 −

Et + Ez
2

)
+ 2

(
Mα+

ex

~

)2

±

√
4

(
Mα+

ex

~

)4

+ 8M

(
Mα+

ex

~

)2(
E − E0,0 −

Et + Ez
2

)
+M2(Et − Ez)2

~2K2
0± =2M

(
E − E0,0 −

Ed + Et

2

)
+ 2

(
Mα−ex

~

)2

±

√
4

(
Mα−ex

~

)4

+ 8M

(
Mα−ex

~

)2(
E − E0,0 −

Ed + Et

2

)
+M2(Ed − Et)2 .

(S4)

As discussed in the main text, the exciton has its minimum energy Emin on a circle in

K -space defined by K2
x +K2

y = K2
R , where

Emin = E0,0 +
Ed + Et

2
− M(α−ex)2

2~2
− (Ed − Et)

2~2

8M(α−ex)2
, K2

R =
(Mα−ex)2

~4
− (Ed − Et)

2

4(α−ex)2
. (S5)
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Low-energy excitons near this minimum experience no dispersion in the polar direction and

parabolic dispersion in the radial direction:

Emin(K) = Emin +
~2(|K| −KR)2

2Mmin

. (S6)

The local effective mass at the minimum Mmin is given by

Mmin = M
4M2(α−ex)4

4M2(α−ex)4 − (Ed − Et)2~4
. (S7)

The density of exciton states, D(E) , near this minimum has one-dimensional character.

Indeed

D(E) =
A

(2π)2

∫
dKxdKyδ(E − Emin(K)) , (S8)

where A is the 2D surface area. Using the cylindrical symmetry of the minimum we arrive

at the density of exciton states per unit area

D(E)

A
=
KR

2π~

√
2Mmin√
E − Emin

. (S9)

The coefficients c1,1 , c1,2 , c0,1 , and c0,2 used in Section 3 are defined based on Eq. (S3)

analogously to Eq. (21):

c1,1 =

c1+ if E1+(K1+) = E

c1− if E1−(K1+) = E

c1,2 =

c1+ if E1+(K1−) = E

c1− if E1−(K1−) = E

c0,1 =

c0+ if E0+(K0+) = E

c0− if E0−(K0+) = E

c0,2 =

c0+ if E0+(K0−) = E

c0− if E0−(K0−) = E .

(S10)

Derived material parameters for the model are given in Supplementary Table S-1.

II. SEPARATION OF VARIABLES

In this section we explicitly carry out the separation of variables in a quantum disk.

Substituting the wavefunction from Eq. (14) into Eq. (13) where all momenta are considered
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Parameter Value (no internal Rashba) Value (including internal Rashba, if different)

ALR 0 0.292

a1,0 2.805 nm

E1,0 −415.2 meV

a2,1 1.385 nm

E2,1 −122.9 meV

me 0.182 m0

mh 0.182 m0

ER 0 −20 meV

αe 183 meV nm

αh −91.5 meV nm

Ed 0 meV 23.4 meV

Et 1.2 meV

Ez 11.4 meV −12.0 meV

Emin −44.4 meV −33.4 meV

ax 3.55 nm

g0 0.321

g1 0.974

ε̃∞ 3.5

~ωLT 20.8 meV

Table S-1. Derived PEPI parameters, assuming me = mh , αe > 0 , and αh < 0 . Where

applicable, values are shown both without and with internal Rashba.

as momenta operator and presenting operators K̂± and K̂2 in cylindrical coordinates;

K̂2 = −
[

1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

1

∂φ2

]
, K̂± = −ie±iφ

[
∂

∂ρ
± i

ρ

∂

∂φ

]
. (S11)

We obtain the equations describing the radial component of the wavefunction R
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[
E0,0 − E −

~2

2M
∆Fz

]
RFz

0,0 +
α−ex√

2
A+
Fz−1R

Fz
1,+1 −

α−ex√
2
A−Fz+1R

Fz
1,−1 = 0,

α−ex√
2
A−FzR

Fz
0,0 −

[
E0,0 + ∆− E − ~2

2M
∆Fz−1

]
RFz

1,1 +
α+

ex√
2
A−FzR1,0 = 0,

α+
ex√
2
A+
Fz−1R

Fz
1,+1 −

[
E0,0 + ∆ + δ − E − ~2

2M
∆Fz

]
RFz

1,0 +
α+

ex√
2
A−Fz+1R

Fz
1,−1 = 0,

−α
−
ex√
2
A+
Fz
RFz

0,0 +
α+

ex√
2
A+
Fz
RFz

1,0 −
[
E0,0 + ∆− E − ~2

2M
∆Fz+1

]
RFz

1,−1 = 0, (S12)

where the radial operators ∆` and A±` are defined as:

∆` =
1

ρ

∂

∂ρ
ρ
∂

∂ρ
− `2

ρ2
, A−` =

[
∂

∂ρ
+
`

ρ

]
, A+

` = −
[
∂

∂ρ
− `

ρ

]
. (S13)

For free exciton motion, the equations for the radial function are satisfied by Bessel func-

tions with integer index, J`(Kρ) , where ` = 0, 1, 2, . . . . Using the relationship ∆`J`(Kρ) =

−K2J`(Kρ) and A±` J`(Kρ) = KI`±1(Kρ) , we can reduce the problem of the variable sep-

aration to the solution of a 4× 4 matrix. Indeed substituting RFz
0,0(ρ) = CFz

0,0JFz(Kρ) and

RFz
1,ν(ρ) = CFz

1,νJFz−ν(Kρ) , where ν = ±1, 0 . We obtain the Hamiltonian given in Eq. (15),

ĤFz =



|0, 0〉|Fz〉 |1, 1〉|Fz − 1〉 |1, 0〉|Fz〉 |1,−1〉|Fz + 1〉

E0,0 + ~2K2

2M
1√
2
Kα−ex 0 − 1√

2
Kα−ex

1√
2
Kα−ex E0,0 + Et + ~2K2

2M
1√
2
Kα+

ex 0

0 1√
2
Kα+

ex E0,0 + Ez + ~2K2

2M
1√
2
Kα+

ex

−Kα−ex 0 1√
2
Kα+

ex E0,0 + Et + ~2K2

2M

 . (S14)

To diagonalize the Hamiltonian we transform it according to:

Ĥ′Fz =m̃−1ĤFzm̃, m̃ =


1 0 0 0

0 −1√
2

1√
2

0

0 0 0 1

0 1√
2

1√
2

0

 , (S15)

resulting in the basis |0, 0〉|Fz〉, |B1〉, |B2〉, |1, 0〉|Fz〉 with

|B1〉 =
−1√

2
[|1, 1〉|Fz − 1〉 − |1,−1〉|Fz + 1〉] , (S16)

|B2〉 =
1√
2

[|1, 1〉|Fz − 1〉+ |1,−1〉|Fz + 1〉] . (S17)
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. The Hamiltonian in this basis is block diagonal:

Ĥ′Fz =



|0, 0〉|Fz〉 |B1〉 |B2〉 |1, 0〉|Fz〉

E0,0 + ~2K2

2M
−Kα−ex 0 0

−Kα−ex E0,0 + Et + ~2K2

2M
0 0

0 0 E0,0 + Et + ~2K2

2M
Kα+

ex

0 0 Kα+
ex E0,0 + Ez + ~2K2

2M

 . (S18)

The block-diagonal form allows analytic diagonalization, resulting in Eq. 16:

E1±

Fz (K) = E0,0 +
~2K2

2M
+
Et + Ez

2
±
√

(Et − Ez)2 + 4K2(α+
ex)2

2
,

E0±
Fz

(K) = E0,0 +
~2K2

2M
+
Ed + Et

2
±
√

(Ed − Et)2 + 4K2(α−ex)2

2
.

with eigenvectors given by∣∣E1±
Fz

〉
= c1± |B2〉+ |1, 0〉 |Fz〉 ,

∣∣E0±
Fz

〉
= c0± |0, 0〉 |Fz〉+ |B1〉 , (S19)

By substituting in Eq. (S16) and Eq. (S17), and using Eq. (S3) we can write the eigenvectors

as column vectors in the product basis of Eq. (S14), arriving at Eq. (17):

∣∣E1±
Fz

〉
=

1√
1 + c2

1±(K)


0

c1±(K)/
√

2

1

c1±(K)/
√

2

 ,
∣∣E0±

Fz

〉
=

1√
1 + c2

0±(K)


c0±(K)

−1/
√

2

0

1/
√

2

 .

III. BRANCH DECOUPLING

A. Special case Fz = 0

1. Decoupling for the E0± exciton branches

Let us examine the basis vectors Eq. (S16) that comprise part of the solution of the E0±

energy branch for Fz = 0 . The envelope coordinate representation of basis vector |B1〉 is,

〈ρ, φ|B1〉 =
−1√

2
(|1, 1〉〈ρ, φ|Fz − 1〉 − |1,−1〉〈ρ, φ|Fz + 1〉) , (S20)

〈ρ, φ|B1〉 =
−1√

2
eiFzφ

(
|1, 1〉e−iφJFz−1(Kρ)− |1,−1〉eiφJFz+1(Kρ)

)
. (S21)
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Let us consider the very simple special case Fz = 0 . Then,

〈ρ, φ|B1(Fz = 0)〉 =
−1√

2

(
|1, 1〉e−iφJ−1(Kρ)− |1,−1〉eiφJ1(Kρ)

)
. (S22)

Now let us use the identity J−1(x) = J1(x) . Then,

〈ρ, φ|B1(Fz = 0)〉 =
1√
2

(
|1, 1〉e−iφ + |1,−1〉eiφ

)
J1(Kρ) . (S23)

This shows that for Fz = 0 the ket |B1〉 has associated with it only a single radial function.

The same argument can be applied to the |B2〉 ket.

Putting this in vector form we can write, for the special case of Fz = 0 , the radial

coordinate representation of the energy eigenvectors for the E0± branch:

〈ρ, φ|E0±
Fz=0(K)〉 =

1√
1 + c2

0±(K)


c0±(K)J0(Kρ)

−1/
√

2e−iφJ−1(Kρ)

0

1/
√

2eiφJ1(Kρ)



=
1√

1 + c2
0±(K)


c0±(K)J0(Kρ)

1/
√

2e−iφJ1(Kρ)

0

1/
√

2eiφJ1(Kρ)

 . (S24)

Since within the E0± branch there are two solutions for K for a given energy, which we

label K1 and K2 , the total wavefunction for Fz = 0 , for the E0± branch can be written as

the sum of the 0 branch bulk eigenvectors with roots K1 and K2 , which may correspond

to the E0− , E0+ , or both branches at a given energy:

Ψ0±
Fz=0(ρ) = A〈ρ, φ|E0±

Fz=0(K1)〉+B〈ρ, φ|E0±
Fz=0(K2)〉 , (S25)

which can satisfy the boundary condition for a disk of radius R ,

Ψ0
Fz=0(ρ = R) = 0 , (S26)

because the solution involves two radial equations with two unknowns (A,B ). Since within

Eq. (S24) there are only two independent rows, the value of the energy that causes the first

and the fourth rows to vanish will also cause the second row to vanish. Therefore the Fz = 0

state associated with branch E0± completely decouples from the branch E1± .
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2. Decoupling for the E1± exciton branches.

Examining Eq. (17): we can also see that the same arguments made above for the E0±

exciton branches can be used to write decoupled solutions for the E1± branch. We rewrite

the coordinate representation of the E1± energy eigenvectors for Fz = 0 as,

〈ρ, φ|E1±
Fz=0(K)〉 =

1√
1 + c2

±1(K)


0

c±1(K)/
√

2e−iφ(−J1(Kρ))

J0(Kρ)

c±1(K)/
√

2eiφJ1(Kρ)

 . (S27)

We note that the radial wavefunction in the second element in this vector is proportional

to the fourth. Proceeding on, since there are two independent solutions for K in branch 1

at a given energy, which we label K3 , K4 , we can form now the quantum disk wavefunction

as a combination of the two corresponding energy eigenvectors:

Ψ1
Fz=0(ρ) = C〈ρ, φ|E1±

Fz=0(K3)〉+D〈ρ, φ|E1±
Fz=0(K4)〉 . (S28)

This wavefunction can satisfy the boundary condition,

Ψ1
Fz=0(ρ = R) = 0 , (S29)

because a solution involves two equations in the two unknowns, C ,D . Since within

Eq. (S29) there are only two independent rows, the quantum confined state associated with

branch 1 completely decouples from the branch 0 for Fz = 0 .

B. General case Fz 6= 0

Now let us consider if the decoupling of the E0± and E1± exciton branches is possible

in the general case Fz 6= 0 . We examine the energy eigenvectors for this branch. Let us

examine the radial coordinate representation of the energy eigenvectors for the E0± branch:

〈ρ, φ|E0±(K)〉 =
eiFzφ√

1 + c2
0±(K)


c0±(K)JFz(Kρ)

−1/
√

2e−iφJFz−1(Kρ)

0

1/
√

2eiφJFz+1(Kρ)

 . (S30)
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This wavefunction has cylindrical symmetry and can be written for two distinct values of

K , however, each of the 3 components of this wavefunction should vanish at the QD surface.

Let us check if this is possible. We will try the decoupling procedure using the following

identity,

Jn−1(x) + Jn+1(x) =
2n

x
Jn(x) , (S31)

or better

Jn(x) = (x/2n)[Jn−1(x) + Jn+1(x)], (S32)

which allows us to rewrite the energy eigenvectors for the E0± branch as,

〈ρ, φ|E0±(K)〉 =
eiFzφ√

1 + c2
0±(K)


c0±(K)(Kρ/2Fz)[JFz−1(Kρ) + JFz+1(Kρ)]

−1/
√

2e−iφJFz+1(Kρ)

0

1/
√

2eiφJFz+1(Kρ)

 . (S33)

The corresponding eigenvectors for the E1± branch are,

〈ρ, φ|E1±(K)〉 =
eiFzφc1±(K)√

1 + c2
1±(K)


0

1/
√

2e−iφJFz−1(Kρ)

1/c1±(K)(Kρ/2Fz)[JFz−1(Kρ) + JFz+1(Kρ)]

1/
√

2eiφJFz+1(Kρ)

 . (S34)

It appears that the radial wavefunction in the first and third rows in these expressions is a

linear combination of the ones in the second and fourth rows.

Let us consider now if the boundary condition requirement that the radial wave function

vanish at the surface in each row can be satisfied in this case with just two K : K1 and

K2 . Consider again our general quantum disk superposition of two bulk vectors, Eq. (S25),

which was written for the case Fz = 0 . Let us suppose that such a wavefunction can be

written for the general case, Fz 6= 0 . In that event, we suppose a wave function of the form,

Ψ0±
Fz

(ρ) = A〈ρ, φ|E0±
Fz

(K1)〉+B〈ρ, φ|E0±
Fz

(K2)〉 .

In this case our wavefunction is a mix of branch 0 states with wave vectors K1 and K2

respectively:

Ψ0±
Fz

(ρ) =A


c0±(K1)K1ρ

2Fz
[JFz−1(K1ρ) + JFz+1(K1ρ)]

−1/
√

2e−iφJFz+1(K1ρ))

0

1/
√

2eiφJFz+1(K1ρ)

 +B


c0±(K2)K2ρ

2Fz
[JFz−1(K2ρ) + JFz+1(K2ρ)]

−1/
√

2e−iφJFz+1(K2ρ))

0

1/
√

2eiφJFz+1(K2ρ)

 .
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Now consider the boundary condition at radius R : Ψ0±
Fz=0(ρ = R) = 0 . Writing out all

components of the vector equation explicitly,

Ac0(K1)JFz(K1R) +Bc0(K2)JFz(K2R) = 0 ,

AJFz−1(K1R) +BJFz−1(K2R) = 0 ,

AJFz+1(K1R) +BJFz+1(K2R) = 0 . (S35)

Now we add the second and third of these equations together and use identity Eq. (S31):

Jn−1(x) + Jn+1(x) = 2n
x
Jn(x) , we obtain,

A
JFz(K1R)

K1

+B
JFz(K2R)

K2

= 0 . (S36)

Now our system of equations reduces to,

Ac0(K1)JFz(K1R) +Bc0(K2)JFz(K2R) = 0 ,

A
JFz(K1R)

K1

+B
JFz(K2R)

K2

= 0 . (S37)

One can see that we are apparently able to satisfy BCs and find the energy of confined levels

in the branch 0 solutions:

[(c0(K1)/K2)− (c0(K2)/K1)]JFz(K1a)JFz(K2a) = 0 . (S38)

Equation Eq. (S38) indicates that there are two solutions: (1) A = 0 and JFz(K2R) = 0

and (2) B = 0 JFz(K1R) = 0 . However, neither solution causes all three rows in Eq. (S35)

to vanish at the surface. We conclude that there is no decoupling for |Fz| > 0 . For Fz = 0 ,

decoupling occurs due to the fact that J1(x) = J−1(x) .

The same argument can be made for the existence of decoupled branch 1 solutions.

Ψ1
Fz(ρ) = C〈ρ, φ|E1±

Fz=0(K3)〉+D〈ρ, φ|E1±
Fz=0(K4)〉 .

In this case our wavefunction has the form of a mix of branch 1 states with wave vectors
K3 and K4 respectively:

Ψ1
Fz

(ρ) = C


0

1/
√

2e−iφJFz−1(K3ρ)

1
c1±(K3)

K3ρ
2Fz

[JFz−1(K3ρ) + JFz+1(K3ρ)]

1/
√

2eiφJFz+1(K3ρ)

 +D


0

1/
√

2e−iφJFz−1(K4ρ)

1
c1±(K4)

Kρ
2Fz

[JFz−1(K4ρ) + JFz+1(K4ρ)]

1/
√

2eiφJFz+1(K4ρ)

 .



11

Similar considerations as outlined above for the 0 -branch shows that decoupling is impos-

sible for the 1 -branch for |Fz| > 0 .

Consequently the quantum confined state associated with Fz 6= 0 must be an admixture

between the E0± and the E1± branches. This can be seen in the numerical results, which

show avoided crossings for Fz 6= 0 but not for Fz = 0 (Figure 3).

IV. NEGATIVE OR COMPLEX K2

In this section, we prove that the boundary conditions are sufficient and the wavefunctions

can be chosen to be real, despite the occurrence of complex K2 values. We first consider

the case where some K2 are negative but all are real. In this case, some K are pure

imaginary, and the corresponding c coefficients in the wave function are also imaginary.

An integer Bessel function of an imaginary argument is either pure real or pure imaginary:

J`(ix) ∝ i` . The corresponding eigenvectors (19),(20) are thus either pure real or pure

imaginary, depending on the parity of Fz : E0± is real for even Fz and imaginary for odd

Fz , while E1± is real for odd Fz and imaginary for even Fz . The determinant in Eq (24)

is real with an even number of imaginary rows or imaginary with an odd number. In a

coupled system (Fz 6= 0 ), all A , B , C , D coefficients are real or imaginary in order to

give the correct sign of the determinant, so the overall wavefunction is purely real or purely

imaginary. In a decoupled system, the same argument applies within the decoupled 2x2

block.

We now consider complex K2 . If E is below the minimum of the dispersion, all four K

are complex and the situation is unphysical. However, in the case Emin < E < E0,0 + Et+Ez
2

,

K2
1+ and K2

1− are complex, and both correspond to the E1− branch. At this energy,

both K0± are real. The coefficients A,B cannot vanish in general (this would represent a

decoupled solution, which does not exist for Fz 6= 0 as proved in Supplementary Section III)

so they must be complex. One might be concerned that this leads to additional degrees of

freedom requiring additional boundary conditions. However, we will show that this is not

the case.

We begin by noting that K2
1± are complex when the argument of the square root in

Eq. (S4) is negative, so K∗1+ = K1− . (Note
√
z is the principle square root of z in

all cases). Since both K1+ and K1− are from the E1− branch, it can be shown that
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c1,1 = c1−(K1+) = c1−(K∗1−) = (c1−(K1−))∗ = c∗1,2 . Therefore the first two columns of the

matrix in Eq. (24) are complex conjugates of one another. Let v1 be the real part of the

first column, v2 be its imaginary part, and v3 and v4 be the third and fourth columns.

We consider cases.

Case 1

First, assume v3 and v4 are both real. This happens when K2
0± is positive and in some

cases where it is negative (as discussed above). Eq. (24) may then be rewritten

A(v1 + iv2) +B(v1 − iv2) + Cv3 +Dv4 = 0 . (S39)

We break the coefficients into real and imaginary parts: A = A′+ iA′′ , B = B′+ iB′′ ,

C = C ′ + iC ′′ , D = D′ + iD′′ . The equation becomes two equations, one for the real and

one for the imaginary parts:

(A′ +B′)v1 + (−A′′ +B′′)v2 + C ′v3 +D′v4 = 0 , (S40)

(A′′ +B′′)v1 + (A′ −B′)v2 + C ′′v3 +D′′v4 = 0 . (S41)

With the correct choice of overall phase, we can guarantee one coefficient is real. We

choose D , i.e., D′′ = 0 . The imaginary equation then becomes

(A′′ +B′′)v1 + (A′ −B′)v2 + C ′′v3 = 0 . (S42)

The imaginary equation is now overdetermined. Since v1 , v2 , and v3 are in general

linearly independent, A′′ + B′′ = 0 and A′ − B′ = 0 , i.e., A = B∗ , and furthermore

C ′′ = 0 , i.e., C is real. Therefore there are still only four degrees of freedom. Furthermore,

since C and D are both real and their eigenfunctions are both real, the 0± branch of the

wavefunction is real. It is apparent from Eq. (21) that both 1± eigenfunctions belong to the

1− branch, and these eigenfunctions are complex conjugates for any ρ , so the 1± branch

of the wavefunction is real. Therefore the wavefunction 〈ρ, φ = 0|ψFz〉 is real, despite the

complex K1± .

Case 2

If both v3 and v4 are imaginary, the same procedure applies, except we choose D to be

imaginary. Now the real part is overdetermined, leading to the conclusion that A = −B∗
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and C is imaginary. The wavefunctions are still real.

Case 3

Finally, consider the case in which of v3 , v4 is real and the other is imaginary. With-

out loss of generality, v3 is imaginary. We again choose the overall phase so D is real.

Redefining v5 = −iv3 , the real and imaginary equations become

(A′ +B′)v1 + (−A′′ +B′′)v2 − C ′′v5 +D′v4 = 0 , (S43)

(A′′ +B′′)v1 + (A′ −B′)v2 + C ′v5 = 0 . (S44)

The imaginary equation is overdetermined, in general v1 , v2 , and v5 are linearly indepen-

dent, so again (A′′ +B′′) = 0 and (A′ −B′) , i.e., A = B∗ , and now C ′ = 0 , so C is pure

imaginary. By similar logic, there are 4 degrees of freedom and the wavefunctions are real.

V. OSCILLATOR TRANSITION STRENGTH

The relative oscillator transition strength is determined by the square of the inner prod-

uct of the light polarization vector, ê , and the transition matrix element P = 〈ΨFz |p̂|G〉

between the vacuum state of the QD |G〉 and the exciton wavefunction |ΨFz〉 where p̂

is the momentum operator. In the weak confinement regime where the exciton radius is

much smaller than QD size the exciton wavefunction can be presented as ΨFz ;n,m(r,ρ) =

φn,m(r)|ψ〉Fz(ρ, φ) , [3, 4] where φn,m(r) describes the internal motion of an electron and

a hole within the 2D exciton and |ψFz(ρ, φ)〉 from Eq. (22) describes the exciton center-

of-mass motion in the cylindrical QDs. We consider the total exciton wavefunction from

Eq. (14):

ΨFz(r, ρ, φ, z) =
2

L
cos
(πze

L

)
cos
(πzh

L

)
φm,n(r)×

N√
2π

[
eiFzφRFz

0,0(ρ)|0, 0〉+
∑

µ=±1,0

ei(Fz−µ)φRFz
1,µ(ρ)|1, µ〉

]
.

The wavefunction describing the relative motion of the electron and hole is normalized. As a

result the constant N is connected only with exciton center-of-mass motion, and is defined
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as:

1 = N 2

∫ R

0

ρdρ

(
|RFz

0,0(ρ)|2 +
∑

µ=±1,0

|RFz
1,µ(ρ)|2

)

= N 2R2

∫ 1

0

xdx

(
|RFz

0,0(Rx)|2 +
∑

µ=±1,0

|RFz
1,µ(Rx)|2

)
. (S45)

From the normalization condition, we have

N =
1

R
√
I
, I =

∫ 1

0

xdx

(
|RFz

0,0(Rx)|2 +
∑

µ=±1,0

|RFz
1,µ(Rx)|2

)
, (S46)

where I is a dimensionless normalization integral. Then, using the coordinate represen-

tation for the vacuum function, G = δ(ρe − ρh) , we calculate the transition dipole PFz

as,

P †Fz ;n,m = 〈G|p̂|ΨFz ;n,m〉

=
N√
2π
φn,m(0)

∑
ν

∫ 2π

0

dφ

∫ R

0

d2ρei(Fz−ν)φRFz
1,ν(ρ)〈G|p̂ |1, ν〉

=
√

2πNφn,m(0)

∫ R

0

ρdρRFz
1,ν(ρ)〈G|p̂ |1, ν〉 δFz−ν,0

=
√

2πNφn,m(0)R2

∫ 1

0

xdxRFz
1,ν(Rx)〈G|p̂ |1, ν〉 δFz−ν,0 . (S47)

Then the square of the dipole matrix element is,

|〈G|p̂|ΨFz ;n,m〉|2 =
2πR2

I
|φn,m(0)|2

∣∣∣∣∫ 1

0

xdxRFz
1,ν(Rx)

∣∣∣∣2 |〈G|p̂ |1, ν〉 |2δFz−ν,0 . (S48)

It is most useful to recast this in terms of the oscillator strength per unit area for light

with polarization vectors denoted ê , using fFz ;n,m
ê = 2|PFz ;n,m · ê|2/(m0~ω) , where ~ω is

the transition energy and PFz ;n,m is the dipole transition matrix element for exciton state

Fz :

fFzê
πR2

=

(K2
Fz ,ν

πR2

)
2|〈G|p̂ |1, ν〉 · ê|2

m0~ω
δFz−ν,0 , (S49)

where the squared overlap per unit area is,(K2
Fz ,ν

πR2

)
=

2

I
|φn,m(0)|2

∣∣∣∣∫ 1

0

xdxRFz
1,ν(Rx)

∣∣∣∣2 δFz−ν,0 . (S50)
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As a dimensional check we note that I is the dimensionless normalization integral while the

overlap integral on the right side is also dimensionless. Using the variationally determined

internal wavefunction,

φ1,0(re − rh; a1,0) =
4

a1,0

1√
2π
e−2|r|/a1,0 , |φn,m(0)|2 =

8

πa2
1,0

. (S51)

From this we see that the right-hand side of Eq. (S50) has dimensions of inverse area.

Next we examine the dipole matrix elements 〈G|p̂ |1, ν〉 . Using the crystal field model

for the Bloch functions in 2D MHPs presented in Ref. 5–8 which was applied to determine

the dipole matrix elements in Refs. 1–3 we find,

〈1, 0| p̂ |G〉 = g0Pcvẑ , 〈1,±1| p̂ |G〉 = g±1Pcv
(∓x̂+ iŷ)√

2
,

g0 =
√

2 sin θ , g±1 = cos θ , (S52)

where Pcv = −i 〈S| p̂z |Z〉 is the Kane momentum matrix element, and θ is the crystal field

phase angle from Eq. (9), which is given by [1]

tan 2θ =
2
√

2∆SO

∆SO − 3δ
θ ≤ π

2
, (S53)

where ∆SO is the spin-orbit splitting and δ is the tetragonal crystal field parameter. As

shown in Table 1, we use an experimental value of sin θ = 0.227 [7] in our numerical

calculations.

As a check of the polarization properties of Eq. (S52), we note that for absorption, from

ground state |G〉 to exciton state |ΨFz〉 , we need the matrix elements 〈ΨFz | p̂ |G〉· ê . We see

from above Eq. (S52) that a state |1,±1〉 will absorb light with polarization ê = (x̂±iŷ)/
√

2 ,

corresponding to angular momentum ±1 as required by conservation of angular momentum.

Now, using the expressions Eq. (S52) we can finally write an expression for the oscillator

strength per unit area of the states in a quantum disk. We will use the definition of the

Kane energy,

Ep ≡
2|Pcv|2

m0

. (S54)

The Kane energy may be estimated from experiment, as discussed in the main text.

We consider light with polarization vectors denoted êµ given as,

ê0 = ẑ , (S55)

ê±1 =
x̂± iŷ√

2
. (S56)
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We define fFzµ to be the oscillator strength for this polarization, that is, f±1 denotes the

oscillator strength for circular polarized light propagating with wave vector along the +ẑ

direction, with positive (+) and negative (− ) helicity, while f0 denotes linearly polarized

light with polarization vector along ẑ . Then we have,

fFz0 = 2 sin2(θ)K2
Fz ,0

(
Ep

~ω

)
δFz ,0 , fFz±1 = cos2(θ)K2

Fz ,±1

(
Ep

~ω

)
δFz ,±1 . (S57)

Note again, the phase angle θ reflects the crystal field; since sin θ is small, the oscillator

strength f0 � f±1 .

VI. LONG-RANGE EXCHANGE

In order to calculate the long-range exchange, we need to calculate the polarization and

then evaluate the integral over the quantum disk in Eq. (29). The exciton total wavefunction

was given in Eq. (14):

ΨFz(r, ρ, φ, z) =
2

L
cos
(πze

L

)
cos
(πzh

L

)
φm,n(r)×

N√
2π

[
eiFzφRFz

0,0(ρ)|0, 0〉+
∑

µ=±1,0

ei(Fz−µ)φRFz
1,µ(ρ)|1, µ〉

]
.

The polarization is

P†Fz = i
~e

m0~ω
2

L
cos2

(πz
L

)
φn,m(0)

N√
2π

∑
ν

ei(Fz−ν)φRFz
1,ν(ρ)〈G|p̂ |1, ν〉 . (S58)

Using this expression in Eq. (29) we can now calculate the LR exchange corrections. Refer-

ring to Eq. (S52) we recast the dipole matrix element as,

〈G|p̂ |1, ν〉 = Pcvgν êν . (S59)

Then, the polarization takes the form,

P†Fz = i
Pcv~e
m0~ω

2

L
cos2

(πz
L

)
φn,m(0)

N√
2π

∑
ν

ei(Fz−ν)φRFz
1,ν(ρ)gν êν ,

≡ i
Pcv~e
m0~ω

∑
ν

FFz ,ν(ρ, φ, z) êν , (S60)

where we have defined the functions FFz ,ν(ρ, φ, z) as,

FFz ,ν(ρ, φ, z) ≡ 2

L
cos2

(πz
L

)
φn,m(0)

N√
2π

ei(Fz−ν)φRFz
1,ν(ρ)gν , (S61)
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where N is the normalization integral defined in Eq. (S46).

Figure S-1. Results of the variational calculation of the ground state and first excited state of

the internal motion. In each panel, the value calculated in the 2D limit is shown as an open

circle. (a) Energy versus a using the ground-state hydrogenic ansatz φ1,0(ρ; a) ∼ exp(−2ρ/a) .

Dielectric constant ratio κ = εi/εo varies in steps of 0.1 from κ = 1 to κ = 4.9 . The optimum

value is indicated for each κ on the curve. Using the values from Table 1, κ = 3.2 . (b) Energy

versus a using the excited-state hydrogenic ansatz φ2,±1(r, φ; a2,1) ∼ ρ exp(−2ρ/3a2,1) exp(±iφ) .

(c) Optimized ground-state binding energy E1,0 and excited-state energy E2,1 . (d) Geometric

Rashba factor ALR given by Eq. (6). The calculated value for the parameters in Table 1 is shown

in Supplementary Table S-1.
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Figure S-2. Long-range exchange correction included in the states shown in Figure 3. The color

indicates the energy of the state in the absence of long-range exchange correction. The relatively

small size and spread of the LR exchange gives us confidence in treating LR exchange perturbatively.
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Figure S-3. Energy levels of confined wavefunctions as a function of disk radius R (as in Figure 3)

but without the LR exchange corrections. Rows are Fz = 0 (top), Fz = 1 (middle), and Fz = 2

(bottom), and columns are without and with internal Rashba from the left. The total oscillator

strength f of the states as given by Eq. (25) is indicated by the color of the points. The results

are qualitatively very similar to Figure 3. The avoided crossings can be seen more easily in this

version, since the LR contribution is not included self-consistently in the wavefunctions.
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Figure S-4. Comparison of same-sign and opposite-sign cases for small QDs. Panels (a-d) use the

opposite sign for αe and αh (as is assumed elsewhere in the paper) while panels (e-h) use the same

sign. (a) and (e) show the dispersion. (b) and (f) show the energy levels (neglecting LR exchange)

for small QDs as a function of 1/R2 . As expected, we see four parallel lines (dark and bright Fz =

0 , two degenerate Fz = ±1 ) with the dark and bright Fz = 0 states switching position between

the cases. The energies approach the results from perturbation theory, which are shown by lines

and described by EFz(R) = ~2(2.405)2

2MR2 − 2ACOM
r (Ee

r +Eh
r ) +EFzexch , where the first term represents

COM confinement, the second term is an overall shift due to COM Rashba terms in Eq. 2, and the

exchange terms EFzexch represent the sum of SR exchange and Rashba internal motion terms. The

exchange terms are given by EFz=1
exch = w cos2 θ , EFz=0, bright

exch = 2w sin2 θ − 4(ACOM
r − AREL

r )ER ,

and EFz=0, dark
exch = 4(ACOM

r − AREL
r )ER . ACOM

r ≈ 0.48 is the COM Rashba coefficient [9] and

AREL
r ≈ 0.292 is the relative Rashba coefficient. Oscillator strengths (OS) are shown as a function

of R in panels (c, d, g, h). In the opposite-sign case, OS of the Fz = 0 bright state (c) is

monotonically increasing with R , whereas in the same-sign case, the it peaks at intermediate R

and goes to zero in both the R → 0 limit (as expected from the perturbative treatment [9]) and

the R → ∞ limit (due to the indirect nature of the bulk dispersion). The oscillator strengths of

the lowest Fz = ±1 state are similar in both cases (d) and (h).
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Figure S-5. Illustration that the model can produce a bright ground exciton. These plots use the

same parameters as in the rest of the paper, but with an increased short-range exchange constant

w = 30 meV, a value representative of PbBr4 -based 2D HOIPs, [8]. Internal Rashba is included,

LR exchange corrections are not included. (a) bulk exciton dispersion. The bright state at K = 0

from the E1− branch is the energy minimum, and the E0− state is dark at K = 0 . (b) Low-

energy levels as a function of QD radius R . Color indicates whether the state is bright (optically

active, shown in orange) or dark (optically passive, shown in blue) and shape indicates Fz as in

Figure 4 (circles for Fz = 0 , stars for Fz = 1 , and lines for Fz = 2 ). For R & 12 nm, the ground

state is a bright Fz = 0 state.
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