Electronic Supplementary Information

Constructing Urchin-Like Ni₃S₂@Ni₃B on Ni Plate as a Highly Efficient Bifunctional Electrocatalyst for Water Splitting Reaction

Yuanyuan Wu^{a, b, c#}, Junqiang Yin^{a,c,d#}, Wei Jiang^{a,c,d}, Hongji Li^{a,c,d}, Chunbo Liu^{a, b, c, d*}, Guangbo

Che^{*a, b, c, d**}

^a Key Laboratory of Preparation Application of Environmental Friendly Materials, Ministry

of Education, Jilin Normal University, Siping 136000, P. R. China

^b College of Chemistry, Jilin Normal University, Siping 13600, P. R. China

^c Key Laboratory of Environmental Materials and Pollution Control, the Education

Department of Jilin Province, Jilin Normal University, Siping 13600, P. R. China

^d College of Environmental Science and Engineering, Jilin Normal University, Siping 13600,

P. R. China

* Corresponding author: Guangbo Che (guangboche@jlnu.edu.cn), Chunbo Liu

(chunboliu@jlnu.edu.cn)

[#] *The authors contributed equally to this work.*

Fig. S1. the EDS spectrum and corresponding element contents of $Ni_3S_2@Ni_3B$

Fig. S2. Photograph of (a) Ni plates, (b) Ni_3B/NP , (c) Ni_3B/NP -1, (d) Ni_3B/NP -2, (e) Ni_3B/NP -3 and (f) $Ni_3S_2@Ni_3B/NP$.

Table S1. Comparison of the pH of solutions containing different components.

Solution composition	рН
$CO(NH_2)_2$	9.25
NH_4F	6.56
$CO(NH_2)_2 + NH_4F$	8.68
$CO(NH_2)_2 + NH_4F + Na_2S \cdot 9H_2O$	8.75

Fig. S3. SEM images of (a) $Ni_3B/NP-1$, (b) $Ni_3B/NP-2$, (c) $Ni_3B/NP-3$ and (d) $Ni_3S_2@Ni_3B/NP$.

Fig. S4. SEM images of different sulfur ion concentrations (a) 80 mL, (b) 120 mL, (c) 160 mL and (d) 200 mL for sulfide reactions.

Table S2. The simulated series resistance (R_s) and charge transfer resistance (R_{ct}) based on the Nyquist plots (Figure 4a) in the presence of Ni₃S₂@Ni₃B/NP, Ni₃S₂/NP and Ni₃B/NP.

Sample	$R_s(\Omega \ cm^2)$	$R_{ct}(\Omega \ cm^2)$
Ni ₃ S ₂ @Ni ₃ B/NP	0.44	4.83
Ni ₃ B/NP	0.28	12.41
Ni ₃ S ₂ /NP	0.59	9.95

Fig. S5. (a) XRD pattern and (b) SEM image of Ni₃S₂@Ni₃B/NP after HER.

Fig. S6. Faradaic efficiency of Ni₃S₂@Ni₃B/NP for HER.

Fig. S7. Cyclic Voltammetry curves of (a) Ni_3B , (b) Ni_3S_2 and (c) $Ni_3S_2@Ni_3B/NP$.

Fig. S8. High-resolution XPS spectra of (a) B 1s and (b) S 2p in Ni₃S₂@Ni₃B/NP.

Fig. S9. (a) XRD pattern and (b) SEM images of Ni₃S₂@Ni₃B/NP after OER.

Fig. S10. High-resolution XPS spectra of Ni₃S₂@Ni₃B/NP after OER.

Table S3. Comparison of the electrocatalytic performance of $Ni_3S_2@Ni_3B/NP$ with some representative electrocatalysts reported recently for HER and OER.

Catalyst	Electrolyte solution	HER/ OER	Current density (j)	Overpotential (η)	Stability test	Reference	
Ni ₃ S ₂ @Ni ₃ B/NP	1 М КОН	HER	10 mA cm ⁻² 100 mA cm ⁻²	182 mV 304 mV	100 h 100 h	- This work	
		1 М КОН	1000 mA cm ⁻² 10 mA cm ⁻²	517 mV 288 mV			
		OER	100 mA cm ⁻²	383 mV			
			1000 mA cm ⁻²	632 mV			
Ni ₃ B/NP	1 М КОН	OER	10 mA cm ⁻²	300 mV	1500 h	J. Mater. Chem. A, 2019, 7, 5288.	
Ni-Fe- OH@Ni ₃ S ₂ /NF	1 M KOH	OER	100 mA cm ⁻²	300 mV	50 h	Adv. Mater., 2017, 29, 1606200.	
Ni ₃ S ₂ /NF		1 1 1 1 1 1 1	HER	10 m A am-?	223 mV	200 h	J. Am. Chem. Soc.
	I M KOH	OER	10 mA cm ²	260 mV 200 h	2015, 137, 14023.		
boronized NiFe	1 М КОН	OER	10 mA cm ⁻²	309 mV	3000 h	Energy Environ. Sci., 2019, 12, 684.	
Zr _{0.8} Ni0.2B2	1 М КОН	OER		350 mV	12 h	Electrochim. Acta,	
Zr _{0.8} Co _{0.2} B ₂		HER	10 mA cm ⁻²	420 mV	12 h	2021, 389, 138789.	
Co-B@Co-Bi	1 М КОН	OER	10 mA cm ⁻²	291 mV	25 h	ACS Sustainable Chem. Eng., 2019, 7, 5620.	
Ni1Co3@BC	1 М КОН	OER	10 mA cm ⁻²	309 mV	20 h	Appl. Surf. Sci., 2020, 532, 147381.	
Cu(OH) ₂ NRs@Ni(OH) ₂ NSs	1 М КОН	HER	10 mA cm ⁻²	200 mV	20 h	ChemistrySelect, 2021, 6, 4129.	
Ni ₃ S ₂ /NF	1 M KOH	HER	10 mA cm ⁻²	189 mV	50 h	J. Mater. Chem. A,	
		OER	10 mA cm ⁻²	296 mV	5000 s	2019 7, 18003.	
Ni ₃ S ₂ @Co(OH) ₂	1 М КОН	OER	10 mA cm ⁻²	290 mV	40 h	Int. J. Hydrogen Energ., 2019, 44, 22955.	