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Section S1. Symmetry requirement for chiral metasurface

Scattering matrix is a powerful tool for investigating the reflection and transmission
properties of a photonic system. We start with the general S-matrix in the basis of linear
polarizations. The input and output channels are defined in Fig. 1c in the main text. For
plane waves traveling along the z-axis, the S-matrix formalism takes the form

|S )= S|S + >, or expressed explicitly by

S1- S11 S12 S13 S14\[S1+
Sa-|_[S12 S22 Saz Saa[S2+
S3- S13 S23 S33 S3al|S34
Sy - S14 Sza S3a Saa)\Say , (S1)

where 51+ (53+) and 52+ (54+) are the x-polarized (y-polarized) light incident from
~Z and + Z sides, and 51- (S3 -) and 52- (54—) are the x-polarized (y-polarized) light
outgoing to ~Z and T Z directions. Therefore, |S $) =@ 0 O)T/ \2 and
© 10 -pY \2 correspond to RCP incident light and @ o -j 0/ 2 and

~T
0 1.0 A2 correspond to LCP incident light. The S-matrix is symmetric due to
Lorentz reciprocity.

Next, we distinguish circular polarization conversion (CPC) and asymmetric transmission
(AT) from 3D chirality. For circularly polarized light incident from the —Z side, the
response of the system can be written as
S11 S12 S13 S\ S11+ 1513
S12 S22 S23 S| 10| _ 1[S12+ iS5y
b2 Si3+ 053
0 S14+S34) (521

|SR'_Z>: S13 Sz S3z Szl 2@ -

S117 1513
|s )= S12 S22 Sz S|l 0 :i512“:523
Lozl 1813 Spz Szz Saalyf2| —i|  /2|S13 533

S1a S24 Sza Su 0 S147 1534 (S2.2)
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where |SR' - Z> and |SL. - Z> stand for RCP and LCP excitation from the — Z side. After some

algebra operations, one obtains CD from ~ Z side

D - e |-t | 3 i(51*2523 = 512523+ 14534 - 51453*4)

-Z

|t |2+ ]| |S121% + [Sa3]* + [S1al® + 347 ,

Similarly, CD from ¥ Z side can be calculated as

i(51251*4 = S12814+ 523534 - 52*3534)

CD+Z=

[S121% + [S23]% + [S14]” + [S34/° .
To simplify Eq.S3, let us introduce

B1= (S + 534)/2,

By =(S1, ‘534)/2,

v1= (514t 523)/2,
V2= (S14 ‘523)/2,

And ¢D * z can then be reduced to

D Zl(ﬁiyz) + 21(:32)/;)

B4+ B2* + [val* + [vol* |B1)? + 1B + [y + |V2|2_

(S3.1)

(S3.2)

(S4.1)
(S4.2)
(S4.3)

(S4.4)

(S35)

Eq. S5 indicates that the CD signal has two origins. The first term in the right-handed side
of Eq. S5 stays invariant when flipping illumination direction. This is exactly the definition
of bi-isotropic(chiral) material,! and can be treated as 3D chirality. In contrast, the second
term in the right-handed side of Eq. S5 flips its sign when changing illumination direction.
This behavior is due to CPC and AT effects. To interpret this, we substitute Eq.4 into Eq.S2

Sy H1Sq3 S, +iS
11 13 .10 , 0
1(S,,+iS 1 0 :81_”/2/1 B2+W1/1
sn-d =552 4 52| = s Lis |+ +
S14+ 183, 0 J -]
S1p 1513 S, — 1S
11 13 , 0 .0
| ) 1(S,-1S), 1 0 +ﬁ1+Wz 1 +,32‘W1 1
S =— . = — . - -
Lozl 2513 = 1S33|  (f2(S13~ 1533 NS N K

Similarly, for the incidence from the + Z side

(S6.1)
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Obviously, the first term in the right-handed side of Eq.S6.1 — Eq.S6.4 corresponds to the
reflection component, while the second term stands for the transmission component that
preserves the handedness of incident light. For both incident conditions, this term only
depends on the excitation handedness, and is invariant under different illumination
directions. The third term in the right-handed side of Eq.S6 indicates the CPC. And
importantly, it is also the cause of AT (e.g., under RCP excitation, the transmission
difference between Eq. S6.1 and Eq. S6.3 also results from in the third term).

The above analysis indicates that, CPC and AT effects may cause nonzero CD signals.
However, it is reported that they have no contribution to optical activity.>* A convenient
way to prevent CPC and AT effect is to impose C,4 rotational symmetry.>¢ That means the
S-matrix is invariant with respect to a /2 rotation about the z-axis. Using the coordinate
transform matrix

-1
-1
Tn/2 = 1 ’
1
T
and solving the equation S=TypS Tn/z, one obtains
B2 =V1="513=524=0,511 =533 522 = S44_The S-matrix is then reduced to
511 B Y
= p Szz -V
-Y 511 p
v B Sz, (S7)

Here the subscript of B and ¥ is dropped for simplicity.

In addition, reciprocal (Pasteur) bi-isotropic material also requires their reflection

coefficient to be direction-independent, which means S11=95 22, This condition is
equivalent to the C, rotational symmetry along the x- or y-axis. Using the coordinate
transform matrix to perform a 7 rotation about the y-axis
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S=T7ST Si=Sp=a

and solving the equation ¥, one obtains

When the metasurface both have out-of-plane (z-axis) C4 and in-plane (x- and y-axis) C,
rotational axes, it is equivalent to the D, symmetry. Therefore, a chiral metasurface analog
to reciprocal (Pasteur) bi-isotropic material should have D4 symmetry and the S-matrix
takes the form

g B 14
S
5= -y J B
Y B al. (S8)

Section S2. Derivation of background matrix ¢

Matrix C describes the background scattering when cavities are absent. Bounded by
symmetry considerations, C will take the same form as Eq.S8. In addition, we assume the

-1
background medium is lossless, implying € T=C""7 Asa result, C can be derived as

—cos¢ jsin écos y jsin ésin y
C = 08 jsin écos y -cosé —jsin ésin y
- - jsin ésin y -cosé jsin écos y
jsin ésin y jsin écos y —-cos§ |/, (S9)

where ¢ and X are arbitrary real parameters. We have deliberately dropped the universal
phase factor 9 through a particular choice of reference input plane.” In addition, a minus
sign ( —) is introduced in Eq. S9 following the standard convention. By assuming that the
background chirality is negligible (X = 0), Eq. S9 reduces to Eq. 1 in the main text.

Section S3. Physical interpretation of matrix K

The excitation coefficient is defined as K = (F1 K2 Kg) with i being a 4 X1

o - :th . . . .
excitation vector for ! cavity. According to time-reversal symmetry and conservation of
energy, K should fulfill the following conditions?

CK™ =-K, (S10.1)
K*K=2r (S10.2)

Note that solving Eq. S10.1 is equivalent to solve Eq. S11 for each i vector
Cr" =1, (S11)

|Ki|2/2 =T

Together with the magnitude of Ki. rad representing the total radiative decay

th
rate for i cavity, the general solution for Eq. S11 can be calculated as



—jsin isin X cosi —jsin icos X
2 2 2
jsin Esin X - jsin ECOS X cos >
K, = '\/Frad Xi
cos — — jsin =cos jsin =sin
> J 2 X J 5 X
—Jjsin iCOS)( cosi - Jsin Esin)(
2 2 2

. (812)

T
= (x; X X X)T . . : o :
where Xi= (i1 X2 ¥z X)' is 4 dimensionless real vector with its magnitude

Xl =2 por negligible background chirality (X = 0), Eq. S12 yields
. §
cos—  —jsin=
2 2
- jsin 3 cos 3
K, = l—‘rad XL'
CoS — —jsin =
2 2
§

-jsin=  cos—
2 2 (S13)

Xi is determined by the orientation of specific nanocavities. For example, considering the
1%t nanorod that oriented along the x-axis (Fig. 1b), the longitudinal LSPR mode is given

— : T
by Xy = \2(0 0 cos¢ sing) , where @ is a position parameter and will be discussed
later. i then can be conveniently expressed as

cos ix - Jjsin ix
213 o 14
cos Ecos ¢ — jsin Esin [0)
COS —X14 — jsin 5x13 ? ?
k1 = Traa 3 g = m cos Esin ¢ —jsin Ecos ¢
C0S =X, — jSin =x
Tt ] 212 0
. . 0
COS =X, — jSin —x
>*12 ] PRt

. (S14)

When nanorods are placed in a homogeneous environment, the background reflection is
negligible (§~7/2) and *1 is then reduced to

7'[
o-it . e_j("’_i)
K1~\Trad _J(')ejd) = JFrage ¢ ej(d’_g)
0 0
0o/, (S15.1)

As a result, the physical interpretation of ¢ is a retardation coefficient for +Z and —Z2
incoming waves, which is related to the layer distance and the wavevector of incoming
waves by



kd = 2(p - w/4), (S15.2)
or

¢ =kd/2 +m/4, (S15.3)

Once the excitation vector for 1% nanorod is ready, the remaining nanocavities can be
— — ; T

deduced from symmetry: Xy =-X3= V2(0 0 cos¢ sing) ,

X,=—X,=+2(-cos¢ -sing 0 0)

Xs=-X,=+2(0 0 -sing -cos¢)’, X,=-Xg=1+/2(sin¢p cos¢ 0 0)"

Section S4. The biorthogonal basis for matrix A
The biorthogonal product (also called c-product) is adopted from literature.® '° In brief, let

us denote the right (column) eigenvectors of 1 by Vi and the left (row) eigenvectors by
L
Vi, We obtain

11
’

R _ R
Hv; = o, (S16.1)

L L
vill = ww; (S16.2)

b

L
where “i is the complex eigenfrequency of Vi and Vi. Given that H is a symmetric matrix,

INT _ INT
by taking the transpose of Eq. S16.2 one gets H(vi) - wi(vi) , which means that the left

and right eigenvectors for the same eigenfrequency are simply each other’s transpose.
Here, we consider the optical system without exceptional points. In this case, the
R R R

eigenvectors form a complete set.” Next, let Xp= (vl v vn) be a matrix formed

_yT
by the columns of the right eigenvectors and X, =Xp be a matrix formed by the rows of

the left eigenvectors. Then

X H=HoX), (S17.1)
HXp=XgH, (S17.2)
where
wq 0
HO: E .'- E )
0 = ) (S17.3)

By right-multiplying Eq. S17.1 with XR and left-multiplying Eq. S17.2 with XL, we have
X HXp=HoX Xp =X XpH 0. Therefore, X1 Xp must be a diagonal matrix. In the main
text, the eigenvectors are normalized such that X Xp= 1. Note that in this case

+
XL XL # 1, biorthogonal basis is no longer orthogonal in a conventional sense.



Section S5. Diagonalization of matrix

Matrix 1 can be diagonalized via two steps. We start with the intralayer diagonalization
from intralayer Hamiltonian first

1
X

L,intra = R,intra

. 1 _1
X =§ _1
1

: (S18.1)

¥ ',
XL1 — ( Ljintra , — XRl
X
Rjintra

X, . : Q Xpooo. :
where “ Lintra is a matrix whose rows are the left eigenvectors of ““0 and “* Rintra is a matrix

, (S18.2)

whose columns are the right eigenvectors of QO. Left-multiply H by X1 yields

D, ST
XL1H=H1XL1=( 0 Cl)Xm

St Do) ™ (S19.1)
where
w,
)
D.= z ~
0 o3
w3 (S19.2)
;5 )
_ W
S = W37 — W3y
W3g W37 | (S19.3)
and a’l, a)Z, &)3’ a)15, a)26, ®37 and @38 are given by
Wy = W) = 2015 ~ W3 + T aps, (S19.4)
Wy = Wo + 2015 — Wiz + T (S19.5)
w3 =wy+wz+ zjrrad +jrabs, (8196)
W15 = — W15+ Wy = Wi7 T Wig (S19.7)
Wpe == W15~ Wy~ W17~ Wig (S19.8)
W37 =~ Wig + W17~ 2jT,qq8In 2 (S19.9)

W3 = W16~ Wig, (S19.10)



H

Before performing the interlayer diagonalization, "'t can be further reorganized by

1
1
1
T1= 1
1
1
1/ for simplicity, yielding
[
W5 Wy ; 5
f”z (‘326
_ T _ Wy Wy
Hy,=TH,T} = Wy Wy;  Wsg
) Z‘~’3 ‘~Z"38 w3y
W37 _~(‘)38 W3 )
W3g W3y w3 (S20)

Eq. S20 forms one of the central results of this work. That is, the mode hybridization of

( w1 “)15) ( ) “)26)
chiral metaatom can be divided into diagonal-block parts: W15 @W1) \@W26 @2/ and
w3 W37  Wsg

w3 —W3g W3y
w37 —Ws3g w3
W3g W3y w3

. A closer look at the eigenvectors of the intralayer

eigenfrequency @1 and “2, one can find these eigenstates are dark modes - a direct
consequence of the irreducible representations of the C, group (also a direct consequence

of the circulant o matrix).> ! The dark modes can also be manifested by Eq. S19.4 and
Eq. S19.5, where the imaginary parts of @1 and ©2 only contain absorption terms. As a
result, the radiative modes from H; contribute to chirality

W3 W37  Wsg
D) —Wae
Hy=|. U3 W3 W37
W37 ~W3g W3
W3g W3y w3 | (S21)

We further perform interlayer diagonalization by

-1 1
1 1
-1 1
¥ oy N2 1 1
L2—“R2™ -1 cos{ sin¢
-1 —-sin{ cos{
cos{ =-sin( 1

sin{ cos¢ 1/, (S22)



W3g w3y

sin{ = cos{=—
~ 2 ~ 2 v
m. The o, K| @ and Xy defined in the

~ 2 | ~ 2
lws + w
where: 37 38 and

main text are

W1~ Wis byt o
Wy ~ W oy 4 i
Ho= 3= Jod, + gy
W3~ Jogy + gy
Wyt [ + gy
W3+ Jod+ ok . (S23.1)
' T
K = KXR1T1XR2’ (S23.2)
a= XL2T1XL1a, (S23.3)
T

X, =XoT1 X1 =X (S23.4)

Section S6. Derivation of |s-)

Considering that the first 4 eigenstates in Eq. S23.1 are dark modes. Eq. 5.1 and Eq. 5.2 in

— T .
the main text can be further simplified by letting: X, = (U" Ur) , K = (O Kr) and

Hr=diag(w_,w_,w+,w+)’ where Un represents the dark modes, U, is a 4%8

_ - 72 | ~2
diagonalization matrix corresponding to chiral radiative modes, and “+ =~ “3 T w37+ w3
Therefore, the dynamic equations can be reduced to

d .
a(Ura) :]Hr(Ura) + KZ|S+)

, (S24.1)
|s_)=C|s )+ K,(U.a) (S24.2)

Solving Eq. S24.1 and Eq. S24.2 yields the scattering matrix of the chiral system
|s_) = (C+K,(jwl -jD,) " 'K7)|s ) =S|s ). (S25)

= . . th
Given that Kr (Kr1 Ky Kiz Kiy) , where Kyi is the excitation vector for i
eigenstate. Eq. S25 can be simplified into

T T T T
KrlKrl + KrZKrZ KT3KT'3 + Kr4Kr4-

jlw-w_) jl-w,) (S26)

S=C+

where



a_  pB_ Y_

T T
KrlKrl + KrZKrZ _ 21—‘rad ,3_ a_ -Y_
jlw-w_) jlw-w_) —y. a. B
Y_ B a |
T T ay, By V4
KrSKr3 + Kr4-Kr4 . 2I‘rad ,3_|_ a ., -Y+
jl-w,) jw-w,) RETESIE
Y+ By ay
and

a, =cos (1 + sin2¢cos {) - jsin (sin 2¢ + cos )
B = cos(sin2¢ + cos {) - jsin {(1 + sin 2¢pcos {)’
Y 4 =+ cos 2¢sin ¢ ’

To summarize, the scattering matrix can be expressed by

g B Y

_ a -y

$= -y a P
14 B«

cos §(w — Wy — sin 2¢3;) - jsin §(sin 2¢(w - w3) - w3;)

a= —-cosé+4l, f0-0 ) w-w.)
- +

cos &(sin 2¢(w — ) - Ws;) - jsin §(w — iz - sin 2¢s;)

B =jsin¢+4r,, -
‘ jw-0 )(w-w,)

- 4T, W35COS 2¢

"ie-w )w-w)

(S27.1)

(S27.2)

(S27.3)
(S27.4)
(S27.5)

(S28.1)

(S28.2)

(S28.3)

(S28.4)

where @ is the reflection coefficient, and B and ¥ are transmission coefficients. As
expected, the S-matrice in Eq. S27 and S28 take the form of Eq. S8, which prohibit the
CPC and AT effects. This can be double-checked by examining the circularly polarized

incidence
1 1 0
1 ( 0 W 1( 0 .. 1/1 \
S—| £ i|l=a—=| £ |+ BFiv)—=
+ + 0
A2 0] VE\ 0]) \2 £l
0 0 1
11 \ 111 _ o1 0 \
S— =0— +B+H—5| 55
2| 0 2| 0 2| TJ
gl VA5 V2%

(S29.1)

(S29.2)



Section S7. Significance of doubly degenerate states

Generally speaking, for a 4-port cavity (Rl) that supports single resonant mode, and

T
. . . . . = (K K K K . .
assuming its excitation coefficient is s (Ks1 Kz Kz Ksa) , the scattering matrix
can be written as!'?

KSKZ
S, =Cy+
1 177 iT
j(w-wy) tot1, (S30.1)
2
Ksl K51KSZ K51K53 K51Ks4
2
il = Ks1Ksp  Ksp  KgKgy KoKy
s'ts — 2
K51K53 K52K53 Ks3 Ks3Ks4
2
Ks1Ksq  Ksolsa Kg3Ksq  Kegq | (S30.2)

where 1 is the (complex) resonant frequency, C1 s the background scattering matrix and

Froe1 is the total decay rate of Rl. Therefore, prohibited CPC and AT exists if and only if
Ko1Kz = Koplts =0, (S31.1)
Ks1kss T Ksoks3 =10 (S31.2)
Ks1Ksp = Ks3Ksa = 0, (S31.3)

Apparently, there exist no nonzero solutions for Eq. S31, meaning that a single resonator
can’t support chiral modes analog to bi-isotropic materials.

In sharp contrast, considering another degenerate resonator (RZ) that possesses identical
resonant frequency and total decay rate, whereas the excitation coefficient is rotated by

T
) =(-kK - K K K
T/2 about the z-axis (s (%3 ) )
o
1 KSKS
S, =C, +
te jlw-w)+T
1 totlj (8321)
2
K3 Ks3Kga ~ KKz T KoK
2
i = Ks3Ksa Ksa T K Kgq T KKy
s'vs T 2
~Kg1Ks3 T KKy Ks1 Ks1Ks2
2
T KgKgs T KgKgy  KgKg Ks2 | (S32.2)
R

1 and B2 are present simultaneously, and note that for in-plane C, symmetry
2

s4, the corresponding S-matrix are

Once the
2 2 _ 2
Koq + K3 = Ko + K

T

T "
KK, + KK

S1=Cy+-
j(w-wy) + Feort, ($33.1)



2 2
Ks1 + Ks3 Ks1Ks2 + Ks3Ksa

2 2
T, T [KsiKs2 T K3y Koo+ Kgy Ksoks3 = Kg1Ksa
KSKS + K KS = 2 2
KgoKs3 = Kg1Ksq Ks1 + Ks3
Ks1Ksq — Ks2Ks3 Ks1Ks2 + Ks3Ks4

which is the chiral formalism in Eq. S8 and S28.

Ks1Ksq = KspKs3

Ks1Ks2 + Ks3Ksa
2 2
KSZ + Ks4-

Section S8. Full fitting results for numerically simulated metasurface

(S33.2)
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Fig. S1. Full fitting results for numerically simulated metasurface. Each rows from top to
bottom correspond to d= 40, 80, 100, 120, 140, 160, 180 nm. The fitting artifact for ¥ in
d = 140 nm is attributed to the negligible chiral response of the metasurface.

Section S9. Evaluation of Fabs in CMT



We evaluate Faps based on the @ = 60 nm metasurface in the main text. First, we artificially
reduce the Drude’s damping rate of gold to 70%, 30%, and O of its original value. The
simulated scattering coefficients are plotted in Fig. S2 as dotted lines. Next, we deduce the

corresponding scattering coefficient based on fitted results from Fig 3d - 3f:
wy+ w3 =1.1679 eV -wis+w;,=-7.6 meV Wi~ wg = 23.1meV

b

| . 174meV [ps =29.8 meV ¢=-2.08rad, and &=1.62rad Cabs g

proportlonally reduced to 20.9me 4 (70%), 8.94 me v (30%) and 0 meV_ The CMT
deduced scattering coefficients from Eq. S24 are plotted as the solid lines. As one can see,
CMT predictions reconstruct the far-field property in excellent agreement, unambiguously
confirming the applicability of chiral CMT.
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Fig. S2. Comparison between numerical simulations (dotted line) and CMT deduced (solid
line) results. The scattering coefficient for 70% (a-c), 30% (d-f), and 0 (g-i) of gold’s
original Drude’s damping rate are illustrated.
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