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Section S1. Symmetry requirement for chiral metasurface

Scattering matrix is a powerful tool for investigating the reflection and transmission 
properties of a photonic system. We start with the general S-matrix in the basis of linear 
polarizations. The input and output channels are defined in Fig. 1c in the main text. For 
plane waves traveling along the z-axis, the S-matrix formalism takes the form 

, or expressed explicitly by| �𝑠 ‒ ⟩� = 𝑆| �𝑠 + ⟩�

, (S1)
(𝑠1 ‒
𝑠2 ‒
𝑠3 ‒
𝑠4 ‒

) = (𝑆11 𝑆12 𝑆13 𝑆14
𝑆12 𝑆22 𝑆23 𝑆24
𝑆13 𝑆23 𝑆33 𝑆34
𝑆14 𝑆24 𝑆34 𝑆44

)(𝑠1 +
𝑠2 +
𝑠3 +
𝑠4 +

)
where  and  are the x-polarized (y-polarized) light incident from 𝑠1 + (𝑠3 + ) 𝑠2 + (𝑠4 + )

 and  sides, and  and  are the x-polarized (y-polarized) light ‒ 𝑧 + 𝑧 𝑠1 ‒ (𝑠3 ‒ ) 𝑠2 ‒ (𝑠4 ‒ )

outgoing to  and  directions. Therefore,  and ‒ 𝑧 + 𝑧 | �𝑠 + ⟩� = (1 0 𝑗 0)𝑇 2

 correspond to RCP incident light and  and (0 1 0 ‒ 𝑗)𝑇 2 (1 0 ‒ 𝑗 0)𝑇 2

 correspond to LCP incident light. The S-matrix is symmetric due to (0 1 0 𝑗)𝑇 2
Lorentz reciprocity.

Next, we distinguish circular polarization conversion (CPC) and asymmetric transmission 
(AT) from 3D chirality. For circularly polarized light incident from the  side, the ‒ 𝑧
response of the system can be written as

, (S2.1)

| �𝑠𝑅, ‒ 𝑧⟩� = (𝑆11 𝑆12 𝑆13 𝑆14
𝑆12 𝑆22 𝑆23 𝑆24
𝑆13 𝑆23 𝑆33 𝑆34
𝑆14 𝑆24 𝑆34 𝑆44

) 1
2(1

0
𝑖
0

) =
1
2(𝑆11 + 𝑖𝑆13

𝑆12 + 𝑖𝑆23
𝑆13 + 𝑖𝑆33
𝑆14 + 𝑖𝑆34

)
, (S2.2)

| �𝑠𝐿, ‒ 𝑧⟩� = (𝑆11 𝑆12 𝑆13 𝑆14
𝑆12 𝑆22 𝑆23 𝑆24
𝑆13 𝑆23 𝑆33 𝑆34
𝑆14 𝑆24 𝑆34 𝑆44

) 1
2( 1

0
‒ 𝑖
0

) =
1
2(𝑆11 ‒ 𝑖𝑆13

𝑆12 ‒ 𝑖𝑆23
𝑆13 ‒ 𝑖𝑆33
𝑆14 ‒ 𝑖𝑆34

)
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where  and  stand for RCP and LCP excitation from the  side. After some | �𝑠𝑅, ‒ 𝑧⟩� | �𝑠𝐿, ‒ 𝑧⟩� ‒ 𝑧
algebra operations, one obtains CD from  side‒ 𝑧

. (S3.1)
𝐶𝐷 ‒ 𝑧 =

|𝑡 + |2 ‒ |𝑡 ‒ |2

|𝑡 + |2 + |𝑡 ‒ |2
=

𝑖(𝑆 ∗
12𝑆23 ‒ 𝑆12𝑆 ∗

23 + 𝑆 ∗
14𝑆34 ‒ 𝑆14𝑆 ∗

34)
|𝑆12|2 + |𝑆23|2 + |𝑆14|2 + |𝑆34|2

Similarly, CD from  side can be calculated as+ 𝑧

. (S3.2)
𝐶𝐷 + 𝑧 =

𝑖(𝑆  
12𝑆 ∗

14 ‒ 𝑆 ∗
12𝑆  

14 + 𝑆  
23𝑆 ∗

34 ‒ 𝑆 ∗
23𝑆  

34)
|𝑆12|2 + |𝑆23|2 + |𝑆14|2 + |𝑆34|2

To simplify Eq.S3, let us introduce

, (S4.1)𝛽1 = (𝑆12 + 𝑆34) 2

, (S4.2)𝛽2 = (𝑆12 ‒ 𝑆34) 2

, (S4.3)𝛾1 = (𝑆14 + 𝑆23) 2

. (S4.4)𝛾2 = (𝑆14 ‒ 𝑆23) 2

And  can then be reduced to𝐶𝐷 ± 𝑧

.
𝐶𝐷 ± 𝑧 =

2𝐼(𝛽 ∗
1 𝛾  

2)
|𝛽1|2 + |𝛽2|2 + |𝛾1|2 + |𝛾2|2

±
2𝐼(𝛽  

2𝛾 ∗
1 )

|𝛽1|2 + |𝛽2|2 + |𝛾1|2 + |𝛾2|2

(S5)

Eq. S5 indicates that the CD signal has two origins. The first term in the right-handed side 
of Eq. S5 stays invariant when flipping illumination direction. This is exactly the definition 
of bi-isotropic(chiral) material,1 and can be treated as 3D chirality. In contrast, the second 
term in the right-handed side of Eq. S5 flips its sign when changing illumination direction. 
This behavior is due to CPC and AT effects. To interpret this, we substitute Eq.4 into Eq.S2

, (S6.1)

| �𝑠𝑅, ‒ 𝑧⟩� = 1
2(𝑆11 + 𝑖𝑆13

𝑆12 + 𝑖𝑆23
𝑆13 + 𝑖𝑆33
𝑆14 + 𝑖𝑆34

) =
1
2(𝑆11 + 𝑖𝑆13

0
𝑆13 + 𝑖𝑆33

0
) +

𝛽1 ‒ 𝑖𝛾2

2 (0
1
0
𝑗

) +
𝛽2 + 𝑖𝛾1

2 ( 0
1
0
‒ 𝑗

)

, (S6.2)

| �𝑠𝐿, ‒ 𝑧⟩� = 1
2(𝑆11 ‒ 𝑖𝑆13

𝑆12 ‒ 𝑖𝑆23
𝑆13 ‒ 𝑖𝑆33
𝑆14 ‒ 𝑖𝑆34

) =
1
2(𝑆11 ‒ 𝑖𝑆13

0
𝑆13 ‒ 𝑖𝑆33

0
) +

𝛽1 + 𝑖𝛾2

2 ( 0
1
0
‒ 𝑗

) +
𝛽2 ‒ 𝑖𝛾1

2 (0
1
0
𝑗

)
Similarly, for the incidence from the  side+ 𝑧



, (S6.3)

| �𝑠𝑅, + 𝑧⟩� = 1
2(𝑆12 ‒ 𝑖𝑆14

𝑆22 ‒ 𝑖𝑆24
𝑆23 ‒ 𝑖𝑆34
𝑆24 ‒ 𝑖𝑆44

) =
1
2( 0

𝑆22 ‒ 𝑖𝑆24
0

𝑆24 ‒ 𝑖𝑆44
) +

𝛽1 ‒ 𝑖𝛾2

2 ( 1
0
‒ 𝑗
0

) +
𝛽2 ‒ 𝑖𝛾1

2 (1
0
𝑗
0

)

, (S6.4)

| �𝑠𝐿, + 𝑧⟩� = 1
2(𝑆12 + 𝑖𝑆14

𝑆22 + 𝑖𝑆24
𝑆23 + 𝑖𝑆34
𝑆24 + 𝑖𝑆44

) =
1
2( 0

𝑆22 + 𝑖𝑆24
0

𝑆24 + 𝑖𝑆44
) +

𝛽1 + 𝑖𝛾2

2 (1
0
𝑗
0

) +
𝛽2 + 𝑖𝛾1

2 ( 1
0
‒ 𝑗
0

)
Obviously, the first term in the right-handed side of Eq.S6.1 – Eq.S6.4 corresponds to the 
reflection component, while the second term stands for the transmission component that 
preserves the handedness of incident light. For both incident conditions, this term only 
depends on the excitation handedness, and is invariant under different illumination 
directions. The third term in the right-handed side of Eq.S6 indicates the CPC. And 
importantly, it is also the cause of AT (e.g., under RCP excitation, the transmission 
difference between Eq. S6.1 and Eq. S6.3 also results from in the third term).

The above analysis indicates that, CPC and AT effects may cause nonzero CD signals. 
However, it is reported that they have no contribution to optical activity.2-4 A convenient 
way to prevent CPC and AT effect is to impose C4 rotational symmetry.5, 6  That means the 
S-matrix is invariant with respect to a  rotation about the z-axis. Using the coordinate 𝜋 2
transform matrix

𝑇𝜋 2 = (   ‒ 1  
   ‒ 1
1    
 1   

),

and solving the equation , one obtains 𝑆 = 𝑇 𝑇
𝜋 2𝑆𝑇𝜋 2

. The S-matrix is then reduced to𝛽2 = 𝛾1 = 𝑆13 = 𝑆24 = 0, 𝑆11 = 𝑆33, 𝑆22 = 𝑆44

. (S7)

𝑆 = (𝑆11 𝛽  𝛾
𝛽 𝑆22 ‒ 𝛾  
 ‒ 𝛾 𝑆11 𝛽
𝛾  𝛽 𝑆22

)
Here the subscript of  and  is dropped for simplicity.𝛽 𝛾

In addition, reciprocal (Pasteur) bi-isotropic material also requires their reflection 
coefficient to be direction-independent, which means . This condition is 𝑆11 = 𝑆22

equivalent to the C2 rotational symmetry along the x- or y-axis. Using the coordinate 
transform matrix to perform a  rotation about the y-axis𝜋

𝑇𝑦 = (  ‒ 1   
‒ 1    
   1
  1  

)



and solving the equation , one obtains .𝑆 = 𝑇𝑇
𝑦𝑆𝑇𝑦 𝑆11 = 𝑆22 = 𝛼

When the metasurface both have out-of-plane (z-axis) C4 and in-plane (x- and y-axis) C2 
rotational axes, it is equivalent to the D4 symmetry. Therefore, a chiral metasurface analog 
to reciprocal (Pasteur) bi-isotropic material should have D4 symmetry and the S-matrix 
takes the form

. (S8)

𝑆 = (𝛼 𝛽  𝛾
𝛽 𝛼 ‒ 𝛾  
 ‒ 𝛾 𝛼 𝛽
𝛾  𝛽 𝛼

)
Section S2. Derivation of background matrix 𝐶

Matrix  describes the background scattering when cavities are absent. Bounded by 𝐶
symmetry considerations,  will take the same form as Eq.S8. In addition, we assume the 𝐶

background medium is lossless, implying .7  As a result,  can be derived as𝐶 + = 𝐶 ‒ 1 𝐶

, (S9)

𝐶 = 𝑒𝑗𝜔𝛿( ‒ cos 𝜉 𝑗sin 𝜉cos 𝜒 𝑗sin 𝜉sin 𝜒
𝑗sin 𝜉cos 𝜒 ‒ cos 𝜉 ‒ 𝑗sin 𝜉sin 𝜒

‒ 𝑗sin 𝜉sin 𝜒 ‒ cos 𝜉 𝑗sin 𝜉cos 𝜒
𝑗sin 𝜉sin 𝜒 𝑗sin 𝜉cos 𝜒 ‒ cos 𝜉

)
where  and  are arbitrary real parameters. We have deliberately dropped the universal 𝜉 𝜒
phase factor  through a particular choice of reference input plane.7 In addition, a minus 𝛿
sign ( ) is introduced in Eq. S9 following the standard convention. By assuming that the ‒
background chirality is negligible ( ), Eq. S9 reduces to Eq. 1 in the main text.𝜒 = 0

Section S3. Physical interpretation of matrix 𝐾

The excitation coefficient is defined as  with  being a  𝐾 = (𝜅1 𝜅2 ⋯ 𝜅8) 𝜅𝑖 4 × 1

excitation vector for  cavity. According to time-reversal symmetry and conservation of 𝑖𝑡ℎ

energy,   should fulfill the following conditions8 𝐾

, (S10.1)𝐶𝐾 ∗ =‒ 𝐾

, (S10.2)𝐾 + 𝐾 = 2Γ

Note that solving Eq. S10.1 is equivalent to solve Eq. S11 for each  vector𝜅𝑖

. (S11)𝐶𝜅𝑖
∗ =‒ 𝜅𝑖

Together with the magnitude of :  representing the total radiative decay 𝜅𝑖 |𝜅𝑖|2 2 = Γ𝑟𝑎𝑑

rate for  cavity, the general solution for Eq. S11 can be calculated as𝑖𝑡ℎ



, (S12)

𝜅𝑖 = Γ𝑟𝑎𝑑( ‒ 𝑗sin
𝜉
2

sin 𝜒 cos
𝜉
2

‒ 𝑗sin
𝜉
2

cos 𝜒

𝑗sin
𝜉
2

sin 𝜒 ‒ 𝑗sin
𝜉
2

cos 𝜒 cos
𝜉
2

cos
𝜉
2

‒ 𝑗sin
𝜉
2

cos 𝜒 𝑗sin
𝜉
2

sin 𝜒

‒ 𝑗sin
𝜉
2

cos 𝜒 cos
𝜉
2

‒ 𝑗sin
𝜉
2

sin 𝜒
)𝑋𝑖

where  is a dimensionless real vector with its magnitude 𝑋𝑖 = (𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4)𝑇

. For negligible background chirality ( ), Eq. S12 yields|𝑋𝑖| = 2 𝜒 = 0

. (S13)

𝜅𝑖 = Γ𝑟𝑎𝑑( cos
𝜉
2

‒ 𝑗sin
𝜉
2

‒ 𝑗sin
𝜉
2

cos
𝜉
2

cos
𝜉
2

‒ 𝑗sin
𝜉
2

‒ 𝑗sin
𝜉
2

cos
𝜉
2

)𝑋𝑖

 is determined by the orientation of specific nanocavities. For example, considering the 𝑋𝑖

1st nanorod that oriented along the x-axis (Fig. 1b), the longitudinal LSPR mode is given 

by , where  is a position parameter and will be discussed 𝑋1 = 2(0 0 cos 𝜙 sin 𝜙)𝑇
𝜙

later.  then can be conveniently expressed as𝜅𝑖

. (S14)

𝜅1 = Γ𝑟𝑎𝑑(cos
𝜉
2

𝑥13 ‒ 𝑗sin
𝜉
2

𝑥14

cos
𝜉
2

𝑥14 ‒ 𝑗sin
𝜉
2

𝑥13

cos
𝜉
2

𝑥11 ‒ 𝑗sin
𝜉
2

𝑥12

cos
𝜉
2

𝑥12 ‒ 𝑗sin
𝜉
2

𝑥11

) = Γ𝑟𝑎𝑑(cos
𝜉
2

cos 𝜙 ‒ 𝑗sin
𝜉
2

sin 𝜙

cos
𝜉
2

sin 𝜙 ‒ 𝑗sin
𝜉
2

cos 𝜙

0
0

)
When nanorods are placed in a homogeneous environment, the background reflection is 
negligible ( ) and  is then reduced to𝜉~𝜋 2 𝜅1

, (S15.1)

𝜅1~ Γ𝑟𝑎𝑑( 𝑒 ‒ 𝑗𝜙

‒ 𝑗𝑒𝑗𝜙

0
0

) = Γ𝑟𝑎𝑑𝑒
‒

𝜋
4

𝑗(𝑒
‒ 𝑗(𝜙 ‒

𝜋
4)

𝑒
𝑗(𝜙 ‒

𝜋
4)

0
0

)
As a result, the physical interpretation of  is a retardation coefficient for  and  𝜙 + 𝑧 ‒ 𝑧
incoming waves, which is related to the layer distance and the wavevector of incoming 
waves by



, (S15.2)𝑘𝑑 = 2(𝜙 ‒ 𝜋 4)

or

. (S15.3)𝜙 = 𝑘𝑑 2 + 𝜋 4

Once the excitation vector for 1st nanorod is ready, the remaining nanocavities can be 

deduced from symmetry: , 𝑋1 =‒ 𝑋3 = 2(0 0 cos 𝜙 sin 𝜙)𝑇

, 𝑋2 =‒ 𝑋4 = 2( ‒ cos 𝜙 ‒ sin 𝜙 0 0)𝑇

. 𝑋5 =‒ 𝑋7 = 2(0 0 ‒ sin 𝜙 ‒ cos 𝜙)𝑇,  𝑋6 =‒ 𝑋8 = 2(sin 𝜙 cos 𝜙 0 0)𝑇

Section S4. The biorthogonal basis for matrix 𝐻

The biorthogonal product (also called c-product) is adopted from literature.9, 10 In brief, let 

us denote the right (column) eigenvectors of  by  and the left (row) eigenvectors by 𝐻 𝑣𝑅
𝑖

. We obtain𝑣𝐿
𝑖

, (S16.1)𝐻𝑣𝑅
𝑖 = 𝜔𝑖𝑣

𝑅
𝑖

, (S16.2)𝑣𝐿
𝑖𝐻 = 𝜔𝑖𝑣

𝐿
𝑖

where  is the complex eigenfrequency of  and . Given that  is a symmetric matrix, 𝜔𝑖 𝑣𝑅
𝑖 𝑣𝐿

𝑖 𝐻

by taking the transpose of Eq. S16.2 one gets , which means that the left 𝐻(𝑣𝐿
𝑖)𝑇 = 𝜔𝑖(𝑣𝐿

𝑖)𝑇

and right eigenvectors for the same eigenfrequency are simply each other’s transpose. 
Here, we consider the optical system without exceptional points. In this case, the 

eigenvectors form a complete set.9 Next, let  be a matrix formed 𝑋𝑅 = (𝑣𝑅
1 𝑣𝑅

2 ⋯ 𝑣𝑅
𝑛)

by the columns of the right eigenvectors and  be a matrix formed by the rows of 𝑋𝐿 = 𝑋𝑇
𝑅

the left eigenvectors. Then

, (S17.1)𝑋𝐿𝐻 = 𝐻0𝑋𝐿

, (S17.2)𝐻𝑋𝑅 = 𝑋𝑅𝐻0

where

. (S17.3)
𝐻0 = (𝜔1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜔𝑛

)
By right-multiplying Eq. S17.1 with  and left-multiplying Eq. S17.2 with , we have 𝑋𝑅 𝑋𝐿

. Therefore,  must be a diagonal matrix. In the main 𝑋𝐿𝐻𝑋𝑅 = 𝐻0𝑋𝐿𝑋𝑅 = 𝑋𝐿𝑋𝑅𝐻0 𝑋𝐿𝑋𝑅

text, the eigenvectors are normalized such that  . Note that in this case 𝑋𝐿𝑋𝑅 ≡ 1

, biorthogonal basis is no longer orthogonal in a conventional sense.𝑋 +
𝐿 𝑋𝐿 ≠ 1



Section S5. Diagonalization of matrix 𝐻

Matrix  can be diagonalized via two steps. We start with the intralayer diagonalization 𝐻
from intralayer Hamiltonian first

, (S18.1)

𝑋 '
𝐿,𝑖𝑛𝑡𝑟𝑎 = 𝑋 '

𝑅,𝑖𝑛𝑡𝑟𝑎 =
1
2( ‒ 1 1 ‒ 1 1

1 1 1 1
‒ 1 1 1 ‒ 1
1 1 ‒ 1 ‒ 1

)
, (S18.2)

𝑋𝐿1 = (𝑋 '
𝐿,𝑖𝑛𝑡𝑟𝑎

𝑋 '
𝑅,𝑖𝑛𝑡𝑟𝑎

) = 𝑋𝑅1

where  is a matrix whose rows are the left eigenvectors of  and  is a matrix 𝑋 '
𝐿,𝑖𝑛𝑡𝑟𝑎 Ω0 𝑋 '

𝑅,𝑖𝑛𝑡𝑟𝑎

whose columns are the right eigenvectors of . Left-multiply  by  yieldsΩ0 𝐻 𝑋𝐿1

, (S19.1)
𝑋𝐿1𝐻 = 𝐻1𝑋𝐿1 = (𝐷0 𝑆 𝑇

𝑐1
𝑆𝑐1 𝐷0)𝑋𝐿1

where

, (S19.2)

𝐷0 = (�̃�1
�̃�2

�̃�3
�̃�3

)
, (S19.3)

𝑆𝑐1 = (�̃�15
�̃�26

�̃�37 ‒ �̃�38
�̃�38 �̃�37

)
and , , , , ,  and  are given by�̃�1 �̃�2 �̃�3 �̃�15 �̃�26 �̃�37 �̃�38

, (S19.4)�̃�1 = 𝜔0 ‒ 2𝜔12 ‒ 𝜔13 + 𝑗Γ𝑎𝑏𝑠

, (S19.5)�̃�2 = 𝜔0 + 2𝜔12 ‒ 𝜔13 + 𝑗Γ𝑎𝑏𝑠

, (S19.6)�̃�3 = 𝜔0 + 𝜔13 + 2𝑗Γ𝑟𝑎𝑑 + 𝑗Γ𝑎𝑏𝑠

, (S19.7)�̃�15 = ‒ 𝜔15 + 𝜔16 ‒ 𝜔17 + 𝜔18

, (S19.8)�̃�26 =‒ 𝜔15 ‒ 𝜔16 ‒ 𝜔17 ‒ 𝜔18

, (S19.9)�̃�37 = ‒ 𝜔15 + 𝜔17 ‒ 2𝑗Γ𝑟𝑎𝑑sin 2𝜙

  . (S19.10)�̃�38 = 𝜔16 ‒ 𝜔18



Before performing the interlayer diagonalization,  can be further reorganized by 𝐻1

 for simplicity, yielding

𝑇1 = (
1

1
1

1
1

1
1

1
)

. (S20)

𝐻2 = 𝑇1𝐻1𝑇𝑇
1 = (

�̃�1 �̃�15
�̃�15 �̃�1

�̃�2 �̃�26
�̃�26 �̃�2

�̃�3 �̃�37 �̃�38
�̃�3 ‒ �̃�38 �̃�37

�̃�37 ‒ �̃�38 �̃�3
�̃�38 �̃�37 �̃�3

)
Eq. S20 forms one of the central results of this work. That is, the mode hybridization of 

chiral metaatom can be divided into diagonal-block parts: ,  and ( �̃�1 �̃�15
�̃�15 �̃�1 ) ( �̃�2 �̃�26

�̃�26 �̃�2 )

. A closer look at the eigenvectors of the intralayer 
( �̃�3 �̃�37 �̃�38

�̃�3 ‒ �̃�38 �̃�37
�̃�37 ‒ �̃�38 �̃�3
�̃�38 �̃�37 �̃�3

)
eigenfrequency  and ,  one can find these eigenstates are dark modes - a direct �̃�1 �̃�2

consequence of the irreducible representations of the C4 group (also a direct consequence 
of the circulant  matrix).5, 11 The dark modes can also be manifested by Eq. S19.4 and Ω0

Eq. S19.5, where the imaginary parts of  and  only contain absorption terms. As a �̃�1 �̃�2

result, the radiative modes from  contribute to chirality𝐻3

. (S21)

𝐻3 = ( �̃�3 �̃�37 �̃�38
�̃�3 ‒ �̃�38 �̃�37

�̃�37 ‒ �̃�38 �̃�3
�̃�38 �̃�37 �̃�3

)
We further perform interlayer diagonalization by

, (S22)

𝑋𝐿2 = 𝑋𝑅2 =
2

2 (
‒ 1 1
1 1

‒ 1 1
1 1

‒ 1 cos 𝜁 sin 𝜁
‒ 1 ‒ sin 𝜁 cos 𝜁

cos 𝜁 ‒ sin 𝜁 1
sin 𝜁 cos 𝜁 1

)



where:  and . The , ,  and  defined in the 
sin 𝜁 =

�̃�38

�̃� 2
37 + �̃� 2

38

cos 𝜁 =
�̃�37

�̃� 2
37 + �̃� 2

38 𝐻0 𝐾' 𝑎' 𝑋𝐿

main text are

, (S23.1)

𝐻0 = (
�̃�1 ‒ �̃�15

�̃�1 + �̃�15
�̃�2 ‒ �̃�26

�̃�2 + �̃�26

�̃�3 ‒ �̃� 2
37 + �̃� 2

38

�̃�3 ‒ �̃� 2
37 + �̃� 2

38

�̃�3 + �̃� 2
37 + �̃� 2

38

�̃�3 + �̃� 2
37 + �̃� 2

38

)
, (S23.2)𝐾' = 𝐾𝑋𝑅1𝑇𝑇

1𝑋𝑅2

, (S23.3)𝑎' = 𝑋𝐿2𝑇1𝑋𝐿1𝑎

. (S23.4)𝑋𝐿 = 𝑋𝐿2𝑇1𝑋𝐿1 = 𝑋𝑇
𝑅

Section S6. Derivation of | �𝑠 ‒ ⟩�

Considering that the first 4 eigenstates in Eq. S23.1 are dark modes. Eq. 5.1 and Eq. 5.2 in 

the main text can be further simplified by letting: ,  and 𝑋𝐿 = (𝑈𝑛 𝑈𝑟)𝑇 𝐾' = (0 𝐾𝑟)
, where  represents the dark modes,  is a  𝐻𝑟 = 𝑑𝑖𝑎𝑔(𝜔 ‒ , 𝜔 ‒ ,𝜔 + ,𝜔 + ) 𝑈𝑛 𝑈𝑟 4 × 8

diagonalization matrix corresponding to chiral radiative modes, and . 𝜔 ± = �̃�3 ± �̃� 2
37 + �̃� 2

38

Therefore, the dynamic equations can be reduced to

, (S24.1)

𝑑
𝑑𝑡

(𝑈𝑟𝑎) = 𝑗𝐻𝑟(𝑈𝑟𝑎) + 𝐾𝑇
𝑟| �𝑠 + ⟩�

. (S24.2)| �𝑠 ‒ ⟩� = 𝐶| �𝑠 + ⟩� + 𝐾𝑟(𝑈𝑟𝑎)

Solving Eq. S24.1 and Eq. S24.2 yields the scattering matrix of the chiral system

. (S25)| �𝑠 ‒ ⟩� = (𝐶 + 𝐾𝑟(𝑗𝜔𝐼 ‒ 𝑗𝐷𝑟) ‒ 1𝐾𝑇
𝑟)| �𝑠 + ⟩� = 𝑆| �𝑠 + ⟩�

Given that , where  is the excitation vector for  𝐾𝑟 =（𝐾𝑟1 𝐾𝑟2 𝐾𝑟3 𝐾𝑟4） 𝐾𝑟𝑖 𝑖𝑡ℎ

eigenstate. Eq. S25 can be simplified into

, (S26)
𝑆 = 𝐶 +

𝐾𝑟1𝐾 𝑇
𝑟1 + 𝐾𝑟2𝐾 𝑇

𝑟2

𝑗(𝜔 ‒ 𝜔 ‒ )
+

𝐾𝑟3𝐾 𝑇
𝑟3 + 𝐾𝑟4𝐾 𝑇

𝑟4

𝑗(𝜔 ‒ 𝜔 + )

where



, (S27.1)

𝐾𝑟1𝐾 𝑇
𝑟1 + 𝐾𝑟2𝐾 𝑇

𝑟2

𝑗(𝜔 ‒ 𝜔 ‒ )
=

2Γ𝑟𝑎𝑑

𝑗(𝜔 ‒ 𝜔 ‒ )（
𝛼 ‒ 𝛽 ‒ 𝛾 ‒
𝛽 ‒ 𝛼 ‒ ‒ 𝛾 ‒

‒ 𝛾 ‒ 𝛼 ‒ 𝛽 ‒
𝛾 ‒ 𝛽 ‒ 𝛼 ‒

）

, (S27.2)

𝐾𝑟3𝐾 𝑇
𝑟3 + 𝐾𝑟4𝐾 𝑇

𝑟4

𝑗(𝜔 ‒ 𝜔 + )
=

2Γ𝑟𝑎𝑑

𝑗(𝜔 ‒ 𝜔 + )（
𝛼 + 𝛽 + 𝛾 +
𝛽 + 𝛼 + ‒ 𝛾 +

‒ 𝛾 + 𝛼 + 𝛽 +
𝛾 + 𝛽 + 𝛼 +

）
and

, (S27.3)𝛼 ± = cos 𝜉(1 ∓ sin 2𝜙cos 𝜁) ‒ 𝑗sin 𝜉(sin 2𝜙 ∓ cos 𝜁)

, (S27.4)𝛽 ± = cos 𝜉(sin 2𝜙 ∓ cos 𝜁) ‒ 𝑗sin 𝜉(1 ∓ sin 2𝜙cos 𝜁)

. (S27.5)𝛾 ± =∓ cos 2𝜙sin 𝜁

To summarize, the scattering matrix can be expressed by

, (S28.1)

𝑆 =（
𝛼 𝛽 𝛾
𝛽 𝛼 ‒ 𝛾

‒ 𝛾 𝛼 𝛽
𝛾 𝛽 𝛼）

, (S28.2)
𝛼 = ‒ cos 𝜉 + 4Γ𝑟𝑎𝑑

cos 𝜉(𝜔 ‒ �̃�3 ‒ sin 2𝜙�̃�37) ‒ 𝑗sin 𝜉(sin 2𝜙(𝜔 ‒ �̃�3) ‒ �̃�37)
𝑗(𝜔 ‒ 𝜔 ‒ )(𝜔 ‒ 𝜔 + )

, (S28.3)
𝛽 = 𝑗sin 𝜉 + 4Γ𝑟𝑎𝑑

cos 𝜉(sin 2𝜙(𝜔 ‒ �̃�3) ‒ �̃�37) ‒ 𝑗sin 𝜉(𝜔 ‒ �̃�3 ‒ sin 2𝜙�̃�37)
𝑗(𝜔 ‒ 𝜔 ‒ )(𝜔 ‒ 𝜔 + )

, (S28.4)
𝛾 =

‒ 4Γ𝑟𝑎𝑑�̃�38cos 2𝜙

𝑗(𝜔 ‒ 𝜔 + )(𝜔 ‒ 𝜔 ‒ )

where  is the reflection coefficient, and  and  are transmission coefficients. As 𝛼 𝛽 𝛾
expected, the S-matrice in Eq. S27 and S28 take the form of Eq. S8, which prohibit the 
CPC and AT effects. This can be double-checked by examining the circularly polarized 
incidence

, (S29.1)

𝑆
1
2( 1

0
± 𝑗
0

) = 𝛼
1
2( 1

0
± 𝑗
0

) + (𝛽 ∓ 𝑗𝛾)
1
2( 0

1
0

± 𝑗
)
. (S29.2)

𝑆
1
2( 0

1
0

∓ 𝑗
) = 𝛼

1
2( 0

1
0

∓ 𝑗
) + (𝛽 ∓ 𝑗𝛾)

1
2( 1

0
∓ 𝑗
0

)



Section S7. Significance of doubly degenerate states

Generally speaking, for a 4-port cavity ( ) that supports single resonant mode, and 𝑅1

assuming its excitation coefficient is , the scattering matrix 𝜅𝑠 = (𝜅𝑠1 𝜅𝑠2 𝜅𝑠3 𝜅𝑠4)𝑇

can be written as12

, (S30.1)
𝑆1 = 𝐶1 +

𝜅𝑠𝜅𝑇
𝑠

𝑗(𝜔 ‒ 𝜔1) + Γ𝑡𝑜𝑡1

, (S30.2)

𝜅𝑠𝜅𝑇
𝑠 = ( 𝜅 2

𝑠1 𝜅𝑠1𝜅𝑠2 𝜅𝑠1𝜅𝑠3 𝜅𝑠1𝜅𝑠4
𝜅𝑠1𝜅𝑠2 𝜅 2

𝑠2 𝜅𝑠2𝜅𝑠3 𝜅𝑠2𝜅𝑠4
𝜅𝑠1𝜅𝑠3 𝜅𝑠2𝜅𝑠3 𝜅 2

𝑠3 𝜅𝑠3𝜅𝑠4
𝜅𝑠1𝜅𝑠4 𝜅𝑠2𝜅𝑠4 𝜅𝑠3𝜅𝑠4 𝜅 2

𝑠4
)

where  is the (complex) resonant frequency,  is the background scattering matrix and 𝜔1 𝐶1

 is the total decay rate of . Therefore, prohibited CPC and AT exists if and only ifΓ𝑡𝑜𝑡1 𝑅1

, (S31.1)𝜅𝑠1𝜅𝑠3 = 𝜅𝑠2𝜅𝑠4 = 0

, (S31.2)𝜅𝑠1𝜅𝑠4 + 𝜅𝑠2𝜅𝑠3 = 0

, (S31.3)𝜅𝑠1𝜅𝑠2 ‒ 𝜅𝑠3𝜅𝑠4 = 0

Apparently, there exist no nonzero solutions for Eq. S31, meaning that a single resonator 
can’t support chiral modes analog to bi-isotropic materials.

In sharp contrast, considering another degenerate resonator ( ) that possesses identical 𝑅2

resonant frequency and total decay rate, whereas the excitation coefficient is rotated by 

 about the z-axis ( )𝜋 2 𝜅 '
𝑠 = ( ‒ 𝜅𝑠3 ‒ 𝜅𝑠4 𝜅𝑠1 𝜅𝑠2)𝑇

, (S32.1)
𝑆 '

1 = 𝐶1 +
𝜅 '

𝑠𝜅'𝑇
𝑠

𝑗(𝜔 ‒ 𝜔1) + Γ𝑡𝑜𝑡1

. (S32.2)

𝜅 '
𝑠𝜅'𝑇

𝑠 = ( 𝜅 2
𝑠3 𝜅𝑠3𝜅𝑠4 ‒ 𝜅𝑠1𝜅𝑠3 ‒ 𝜅𝑠2𝜅𝑠3

𝜅𝑠3𝜅𝑠4 𝜅 2
𝑠4 ‒ 𝜅𝑠1𝜅𝑠4 ‒ 𝜅𝑠2𝜅𝑠4

‒ 𝜅𝑠1𝜅𝑠3 ‒ 𝜅𝑠1𝜅𝑠4 𝜅 2
𝑠1 𝜅𝑠1𝜅𝑠2

‒ 𝜅𝑠2𝜅𝑠3 ‒ 𝜅𝑠2𝜅𝑠4 𝜅𝑠1𝜅𝑠2 𝜅 2
𝑠2

)
Once the  and  are present simultaneously, and note that for in-plane C2 symmetry 𝑅1 𝑅2

, the corresponding S-matrix are𝜅 2
𝑠1 + 𝜅 2

𝑠3 = 𝜅 2
𝑠2 + 𝜅 2

𝑠4

, (S33.1)
𝑆''

1 = 𝐶1 +
𝜅𝑠𝜅𝑇

𝑠 + 𝜅 '
𝑠𝜅'𝑇

𝑠

𝑗(𝜔 ‒ 𝜔1) + Γ𝑡𝑜𝑡1



, (S33.2)

𝜅𝑠𝜅𝑇
𝑠 + 𝜅 '

𝑠𝜅'𝑇
𝑠 = ( 𝜅 2

𝑠1 + 𝜅 2
𝑠3 𝜅𝑠1𝜅𝑠2 + 𝜅𝑠3𝜅𝑠4  𝜅𝑠1𝜅𝑠4 ‒ 𝜅𝑠2𝜅𝑠3

𝜅𝑠1𝜅𝑠2 + 𝜅𝑠3𝜅𝑠4 𝜅 2
𝑠2 + 𝜅 2

𝑠4 𝜅𝑠2𝜅𝑠3 ‒ 𝜅𝑠1𝜅𝑠4  
 𝜅𝑠2𝜅𝑠3 ‒ 𝜅𝑠1𝜅𝑠4 𝜅 2

𝑠1 + 𝜅 2
𝑠3 𝜅𝑠1𝜅𝑠2 + 𝜅𝑠3𝜅𝑠4

𝜅𝑠1𝜅𝑠4 ‒ 𝜅𝑠2𝜅𝑠3  𝜅𝑠1𝜅𝑠2 + 𝜅𝑠3𝜅𝑠4 𝜅 2
𝑠2 + 𝜅 2

𝑠4
)

which is the chiral formalism in Eq. S8 and S28.

Section S8. Full fitting results for numerically simulated metasurface
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Fig. S1. Full fitting results for numerically simulated metasurface. Each rows from top to 
bottom correspond to 40, 80, 100, 120, 140, 160, 180 nm. The fitting artifact for  in 𝑑 =  𝛾

 nm is attributed to the negligible chiral response of the metasurface.𝑑 = 140

Section S9. Evaluation of  in CMTΓ𝑎𝑏𝑠



We evaluate  based on the  nm metasurface in the main text. First, we artificially Γ𝑎𝑏𝑠 𝑑 = 60
reduce the Drude’s damping rate of gold to 70%, 30%, and 0 of its original value. The 
simulated scattering coefficients are plotted in Fig. S2 as dotted lines. Next, we deduce the 
corresponding scattering coefficient based on fitted results from Fig 3d – 3f: 

, , , 𝜔0 + 𝜔13 = 1.1679 𝑒𝑉 ‒ 𝜔15 + 𝜔17 =‒ 7.6 𝑚𝑒𝑉 𝜔16 ‒ 𝜔18 = 23.1 𝑚𝑒𝑉

, , , and .  is Γ𝑟𝑎𝑑 = 17.4 𝑚𝑒𝑉 Γ𝑎𝑏𝑠 = 29.8 𝑚𝑒𝑉 𝜙 =‒ 2.08 𝑟𝑎𝑑 𝜉 = 1.62 𝑟𝑎𝑑 Γ𝑎𝑏𝑠

proportionally reduced to  (70%),  (30%) and . The CMT 20.9 𝑚𝑒𝑉 8.94 𝑚𝑒𝑉 0 𝑚𝑒𝑉
deduced scattering coefficients from Eq. S24 are plotted as the solid lines. As one can see, 
CMT predictions reconstruct the far-field property in excellent agreement, unambiguously 
confirming the applicability of chiral CMT.
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Fig. S2. Comparison between numerical simulations (dotted line) and CMT deduced (solid 
line) results. The scattering coefficient for 70% (a-c), 30% (d-f), and 0 (g-i) of gold’s 
original Drude’s damping rate are illustrated.
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