Electronic Supplementary Information

This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Selenium-induced NiSe₂@CuSe₂ hierarchical heterostructure for efficient oxygen evolution reaction

Ting Li, Qing Zhang, Xiao Hu Wang, Juan Luo, Li Shen, Hong Chuan Fu,

Fei Gu, Nian Bing Li*, Hong Qun Luo *

School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China

E-mail address: linb@swu.edu.cn (N. B. Li); luohq@swu.edu.cn (H. Q. Luo)

Fig. S1. XRD pattern of Ni(OH)₂@Cu/NF, Ni(OH)₂/NF and Cu/NF.

Fig. S2. SEM image of Ni(OH)₂@Cu/NF.

Fig. S3. a) TEM and b) HRTEM images of Ni(OH)₂@Cu.

Fig. S4. The high-resolution XPS spectra of a) Ni 2p, b) Cu 2p, and c) Cu LMM for Ni(OH)₂@Cu.

Fig. S5. SEM and magnified SEM images of a-c) Ni(OH)₂@Cu/NF, d-f) NiSe₂@CuSe₂/NF.

Fig. S6. SEM and magnified SEM images of a-b) NiCuSe-NF-0.1, c-d) NiCuSe-NF-0.2 e-f) NiCuSe-NF-0.3 (0.1, 0.2, 0.3 represent the ratio of nickel salt to copper salt).

Fig. S7. EDS-point data of $NiSe_2@CuSe_2/NF$. Inset image is a table of atomic percent of Ni, Cu and Se.

Fig. S8. SEM and magnified SEM images of NiSe₂@CuSe₂/NF with different hydrothermal time a-b) 3 h, c-d) 6 h e-f) 9 h.

Fig. S9. SEM and magnified SEM images of NiSe₂@CuSe₂/NF at different hydrothermal temperatures: a-b) 120 °C, c-d) 160 °C , and e-f) 200 °C .

Electrocatalyst	η for OER at target j	Substrate	Ref
	(mV @ mA cm ⁻²)		
NiSe ₂	301@40	Carbon cloth	1
CuSe	382 @100	Ni foam	2
CuCo ₂ Se ₄	320 @50	Au-coated glass	3
NiP ₂ @NiSe ₂	329 @100	Carbon fiber	4
Ni _{1.9} Cu _{0.1} -S	259 @10	Ni Foam	5
NiFeSe@NiSe O	360@100	Carbon cloth	6
P-NiSe ₂ @N-	407@100	Glassy carbon electrode	7
CNTs/NC ^a	407/@100	Glassy carbon electrode	7
Ni ₅₉ Cu ₁₉ P9	293@10	Cu foil	8
NC-NiCu-NiCuN	295@100	Ni foam	9
NiSe ₂ -CoSe ₂	250@10	Ni–Co foam	10
Cu ₃ Se ₂ @CoSe ₂ -NiSe ₂	240@10	Ni–Co foam	11
CoSe ₂	280@10	Glassy carbon electrode	12
Co _{0.9} Fe _{0.1} -Se	287@100	Ni foam	13
FeCoMo-Se	264@10	Carbon cloth	14
Fe-doped NiSe ₂	279@10	Glassy carbon electrode	15

 Table S1. Comparison of activity for OER of electrocatalysts in 1.0 M KOH.

^a N-CNTs/NC denotes hierarchical N-doped carbon frameworks.

Sample	R _s (ohm)	R _{ct} (ohm)
NiSe ₂ @CuSe ₂ /NF	2.817	1.998
NiSe ₂ /NF	2.948	5.130
CuSe ₂ /NF	3.199	42.54
Ni(OH) ₂ @Cu/NF	3.588	54.90

Table S2. The fitting results of EIS spectra in 1 M KOH for the OER.

Fig. S10. CV curves at different scan rates for catalysts: a) NF, b) NiSe₂/NF, c) CuSe₂/NF, d) Ni(OH)₂@Cu/NF, and e) NiSe₂@CuSe₂/NF.

Fig. S11. a) LSV curves of $NiSe_2@CuSe_2/NF$, $NiSe_2/NF$, $CuSe_2/NF$, $Ni(OH)_2@Cu/NF$ and NF after iR compensation. b) The OER performance of $NiSe_2@CuSe_2/NF$, $NiSe_2/NF$, and $CuSe_2/NF$ after the electrochemical surface area normalization.

Sample	NiSe ₂ @CuSe ₂ /NF	NiSe ₂ /NF	CuSe ₂ /NF	Ni(OH) ₂ /NF
n (mol)	2.25 × 10 ⁻⁵	1.71 × 10 ⁻⁵	1.67 × 10 ⁻⁵	1.21 × 10 ⁻⁵
<i>j</i> (A cm ⁻²)	1.32×10^{-1}	5.15 × 10 ⁻²	3.25×10^{-3}	1.31 × 10 ⁻²
TOF (s ⁻¹)	7.58×10^{-3}	3.91 × 10 ⁻³	2.52 × 10 ⁻⁴	1.41×10^{-3}

Table S3. TOFs of materials in this work.

TOFs are estimated by assuming that all the metal ions are active during the catalysis process. The current density is at the overpotential of 350 mV for materials. The equation of $TOF = (j \times S)/(4 \times F \times n)$ is utilized for OER calculation, where *j* is the current density (A cm⁻²), *S* represents the surface area of as-prepared electrode, the number 4 means a four- electron reaction for OER. *F* is the Faraday constant (96485.3 C mol⁻¹), and *n* represents the moles of metal atoms on the electrode which can be calculated by the loading weight and the molecular weight of the catalyst.

Fig. S12. LSV curves of NiSe2@CuSe2/NF before and after the test.

Fig. S13. XRD pattern of NiSe₂@CuSe₂/NF after test.

Fig. S14. a) SEM, b) TEM, and c) HRTEM images of NiSe2@CuSe2 after test.

Fig. S15. The comparision of a) Ni 2p, b) Cu 2p spectrum, c) Se 3d spectrum and d) O 1s spectrum of NiSe₂@CuSe₂/NF before and after test.

Fig. S16. a) OER polarization curves, b) Tafel slopes, c) Nyquist plots of NiCuSe-NF-0.1, NiCuSe-NF-0.2 and NiCuSe-NF-0.3. d) OER polarization curves, e) Tafel slopes, and f) Nyquist plots of different hydrothermal time (3 h, 6 h, 9 h). g) OER polarization curves, h) Tafel slopes, and i) Nyquist plots of different hydrothermal temperature (120 °C, 160 °C, 200 °C).

NiCuSe-NF-0.3. b) Cu 2p spectra of CuSe₂/NF, NiCuSe-NF-0.1, NiCuSe-NF-0.2 and NiCuSe-NF-0.3.

Sample	Ni 2p 3/2 (eV)		Ni 2p 1/2 (eV)			
	Ni ⁰	Ni ²⁺	Ni ³⁺	Ni ⁰	Ni ²⁺	Ni ³⁺
NiSe ₂ /NF	852.29	855.32	857.12	869.23	872.92	874.47
NiCuSe-NF-0.1	852.99	855.47	857.00	869.71	873.14	874.52
NiCuSe-NF-0.2	853.48	855.80	857.57	870.67	873.60	875.38
NiCuSe-NF-0.3	853.21	855.66	857.14	869.98	873.42	874.97

Table S4. The binding energies of Ni 2p of NiSe₂/NF, NiCuSe-NF-0.1, NiCuSe-NF-0.2, and NiCuSe-NF-0.3.

Sample	Cu 2p 3/2 (eV)		Cu 2p 1/2	2 (eV)
	Cu ⁰ /Cu ¹⁺	Cu ²⁺	Cu ⁰ /Cu ¹⁺	Cu^{2+}
CuSe ₂ /NF	932.43	934.44	952.61	954.83
NiCuSe-NF-0.1	932.35	933.89	952.31	954.45
NiCuSe-NF-0.2	932.23	933.73	952.05	954.09
NiCuSe-NF-0.3	932.33	933.68	952.11	954.29

Table S5. The binding energies of Cu 2p of CuSe₂/NF, NiCuSe-NF-0.1, NiCuSe-NF-0.2, and NiCuSe-NF-0.3.

References

- J. Zhou, Y. Liu, Z. Zhang, Z. Huang, X. Chen, X. Ren, L. Ren, X. Qi and J. Zhong, *Electrochim. Acta*, 2018, 279, 195-203.
- B. Chakraborty, R. Beltran-Suito, V. Hlukhyy, J. Schmidt, P. W. Menezes and M. Driess, *ChemSusChem*, 2020, 13, 3222-3229.
- X. Cao, J. E. Medvedeva and M. Nath, ACS Appl. Energy Mater., 2020, 3, 3092-3103.
- 4 L. Yang, L. Huang, Y. Yao and L. Jiao, *Appl. Catal. B Environ.*, 2021, 282, 119584.
- 5 H. Liu, Z. Guo and J. Lian, J. Solid State Chem., 2021, 293, 121776.
- 6 G. Yilmaz, C. F. Tan, Y.-F. Lim and G. W. Ho, *Adv. Energy Mater.*, 2019, **9**, 1802983.
- J. Yu, W.-J. Li, G. Kao, C.-Y. Xu, R. Chen, Q. Liu, J. Liu, H. Zhang and J. Wang, J. Energy Chem., 2021, 60, 111-120.
- 8 B. K. Kim, S.-K. Kim, S. K. Cho and J. J. Kim, *Appl. Catal. B Environ.*, 2018, 237, 409-415.
- 9 J. Hou, Y. Sun, Z. Li, B. Zhang, S. Cao, Y. Wu, Z. Gao and L. Sun, Adv. Funct. Mater., 2018, 28, 1803278.
- 10 D. Chen, Z. Xu, W. Chen, G. Chen, J. Huang, C. Song, C. Li and K. Ostrikov, J. Mater. Chem. A, 2020, 8, 12035-12044.
- G. Wang, J. Huang, G. Chen, W. Chen, C. Song, M. Li, X. Wang, D. Chen, H.
 Zhu, X. Zhang and K. K. Ostrikov, ACS Sustainable Chem. Eng., 2020, 8,

17215-17224.

- 12 Y. Zhang, C. Zhang, Y. Guo, D. Liu, Y. Yu and B. Zhang, J. Mater. Chem. A, 2019, 7, 2536-2540.
- 13 H. Ren, L. Yu, L. Yang, Z.-H. Huang, F. Kang and R. Lv, J. Energy Chem., 2021, 60, 194-201.
- 14 Y.-J. Tang, Y. Wang and K. Zhou, J. Mater. Chem. A, 2020, 8, 7925-7934.
- J. Zhou, L. Yuan, J. Wang, L. Song, Y. You, R. Zhou, J. Zhang and J. Xu, J.
 Mater. Chem. A, 2020, 8, 8113-8120.