Supporting Information

Reversible Transformation between $Au_{14}Ag_8$ and $Au_{14}Ag_4$ Nanoclusters

Peiyao Pan,^{a,b,‡} Chuanjun Zhou,^{a,b,‡} Hao Li,^{a,b} Chen Zhu,^{a,b} Cheng Chen,^c Xi Kang,^{a,b,*} Manzhou Zhu^{a,b,*}

^aDepartment of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.

^bKey Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.

^cInstitutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China.

⁺These authors contributed equally to this work.

*E-mails of corresponding authors: kangxi_chem@ahu.edu.cn (X.K.); zmz@ahu.edu.cn (M.Z.).

Notes: The authors declare no competing financial interest.

This Supporting Information includes: Figures S1-S11 Tables S1-S3

Fig. S1 ESI-MS result of the $Au_{14}Ag_8(Dppm)_6(CN)_4Cl_4$ nanocluster in the positive mode. Inset: the experimental (black line) and the calculated isotope (red line) patterns. As determined by the mass spectrometry, the valence state of the nanocluster is +2, i.e., $[Au_{14}Ag_8(Dppm)_5(CN)_4Cl_4K_1Na_1]^{2+}$.

Fig. S2 XPS results of the $Au_{14}Ag_8(Dppm)_6(CN)_4Cl_4$ nanocluster. (A) Full spectrum; (B) Au 4f spectrum; (C) Ag 3d spectrum.

Fig. S3 Overall structure of the Au₁₄Ag₈(Dppm)₆(CN)₄Cl₄ nanocluster.

Fig. S4 ESI-MS result of the $Au_{14}Ag_4(Dppm)_6Cl_4$ nanocluster in the positive mode. Inset: the experimental (black line) and the calculated isotope (red line) patterns. As determined by the mass spectrometry, the valence state of the nanocluster is +2, i.e., $[Au_{14}Ag_4(Dppm)_6Cl_4]^{2+}$.

Fig. S5 XPS results of the $Au_{14}Ag_4(Dppm)_6Cl_4$ nanocluster. (A) Full spectrum; (B) Au 4f spectrum; (C) Ag 3d spectrum.

Fig. S6 Overall structure of the Au₁₄Ag₄(Dppm)₆Cl₄ nanocluster.

Fig. S7 ESI-MS results of the nanocluster transformation from $Au_{14}Ag_8(Dppm)_6(CN)_4Cl_4$ to $Au_{14}Ag_4(Dppm)_6Cl_4$. *a*: mass signal of $[Au_{14}Ag_4(Dppm)_6Cl_4]^{2+}$; *b*: mass signal of $[Au_{14}Ag_8(Dppm)_5(CN)_4Cl_4K_1Na_1]^{2+}$.

Fig. S8 ESI-MS results of the transformation from $Au_{14}Ag_8(Dppm)_6(CN)_4Cl_4$ to $Au_{14}Ag_4(Dppm)_6Cl_4$ to detect the eliminated species along with the cluster transformation. Two special mass peaks (i.e., 132.90 and 319.82 Da) in the range from 50 to 500 Da were observed, corresponding to $[Ag_1(CN)_1]^+$ and $[Ag_2(CN)_4]^+$, respectively.

Fig. S9 Time-dependent optical absorptions for the nanocluster transformation from $Au_{14}Ag_8(Dppm)_6(CN)_4Cl_4$ to $Au_{14}Ag_4(Dppm)_6Cl_4$ in (A) CHCl₃, (B) DMF, and (C) NMP.

Fig. S10 Time-dependent optical absorptions for the nanocluster transformation from $Au_{14}Ag_8(Dppm)_6(CN)_4Cl_4$ to $Au_{14}Ag_4(Dppm)_6Cl_4$ in different mixed solvents including (A) $CH_2Cl_2:CH_3CN = 5:1$, (B) $CH_2Cl_2:CH_3CN = 25:1$, and (C) $CH_2Cl_2:CH_3CN = 50:1$.

Fig. S11 ESI-MS results of the nanocluster transformation from $Au_{14}Ag_4(Dppm)_6Cl_4$ to $Au_{14}Ag_8(Dppm)_6(CN)_4Cl_4$. a: mass signal of $[Au_{14}Ag_4(Dppm)_6Cl_4]^{2+}$; b: mass signal of $[Au_{14}Ag_8(Dppm)_5(CN)_4Cl_4K_1Na_1]^{2+}$; c: mass signal of $[Au_{14}Ag_6(Dppm)_6Cl_2]^{2+}$.

Table S1. Atom ratio of Au and Ag in $Au_{14}Ag_8(Dppm)_6(CN)_4Cl_4$ and $Au_{14}Ag_4(Dppm)_6Cl_4$ nanoclusters. Atom ratios of Au and Ag in both nanoclusters were calculated from X-ray photoelectric spectroscopy (XPS).

Au ₁₄ Ag ₈ (Dppm) ₆ (CN) ₄ Cl ₄	Au atom	Ag atom
XPS Experiment Ratio	62.85%	37.15%
Theoretical Ratio	63.64%	36.36%
Au ₁₄ Ag ₄ (Dppm) ₆ Cl ₄	Au atom	Ag atom
XPS Experiment Ratio	77.15%	22.85%
Theoretical Ratio	77.78%	22.22%

Table S2. Crystal data and structure refinement for the $Au_{14}Ag_4(Dppm)_6Cl_4$ nanocluster. CCDC number is 2094995.

Crystal system	monoclinic	
Space group	P 2 ₁ /n	
a/Å	16.4329(2)	
b/Å	56.1369(8)	
c/Å	18.7093(3)	
α/°	90	
β/°	99.7170(10)	
γ/°	90	
Volume/Å ³	17011.6(4)	
Z	4	
ρcalcg/cm ³	2.229	
μ/mm ⁻¹	27.910	
F(000)	10432	
Radiation	CuKα (λ = 1.54186)	
Index ranges	-6 ≤ h ≤ 18, -64 ≤ k ≤ 59, -21 ≤ l ≤ 20	
Final R indexes [I>=2σ (I)]	R1 = 0.0706, wR2 = 0.1936	
Final R indexes [all data]	R1 = 0.0816, wR2 = 0.2095	

Crystal system	monoclinic	
Space group	P 21/c	
a/Å	17.3969(5)	
b/Å	23.5948(4)	
c/Å	23.5308(5)	
α/°	90	
β/°	90.862(2)	
γ/°	90	
Volume/Å ³	9657.7(4)	
Z	2	
ρcalcg/cm ³	2.123	
μ/mm ⁻¹	27.508	
F(000)	5628	
Radiation	CuKα (λ = 1.54186)	
Index ranges	-20 ≤ h ≤ 19, -27 ≤ k ≤ 22, -27 ≤ l ≤ 19	
Final R indexes [I>=2σ (I)]	R1 = 0.0927, wR2 = 0.2556	
Final R indexes [all data]	R1 = 0.1217, wR2 = 0.2844	

Table S3. Crystal data and structure refinement for the $Au_{14}Ag_8(Dppm)_6(CN)_4Cl_4$ nanocluster. CCDC number is 2094999.

Three Level B Alerts exist, resulting from the disorder of peripheral ligands of the nanocluster. However, the structure and the composition of this nanocluster are correct since several supplementary approaches, including ESI-MS and XPS, have been performed to confirm the crystal structure of the $Au_{14}Ag_8(Dppm)_6(CN)_4Cl_4$ nanocluster.